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Separation quality of a geometric ratchet

C. Keller, Florian Marquardt, and C. Bruder
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~Received 17 December 2001; published 11 April 2002!

We consider an experimentally relevant model of a geometric ratchet in which particles undergo drift and
diffusive motion in a two-dimensional periodic array of obstacles, and which is used for the continuous
separation of particles subject to different forces. The macroscopic drift velocity and diffusion tensor are
calculated by a Monte Carlo simulation and by a master-equation approach, using the corresponding micro-
scopic quantities and the shape of the obstacles as input. We define a measure of separation quality and
investigate its dependence on the applied force and the shape of the obstacles.
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I. INTRODUCTION

During the last decade, ratchets have been the subje
intense research efforts~for a recent comprehensive revie
see@1#!. Ratchets are able to produce a directed curren
particles although no net average force is applied. Bes
the fundamental interest in such a somewhat counterintu
physical phenomenon, their analysis is important both for
description of natural nonequilibrium transport proces
~like ‘‘Brownian motors’’ in cells @2,3#! and for concrete
technical applications as rectifiers and separation devi
The various types of ratchets considered so far include ro
ing, flashing, and correlation ratchets, where a tempor
periodic force, periodic switching of a potential, and color
nonthermal noise, respectively, induce directed transpor
an asymmetric potential@4–6,1#. Apart from these, there ar
‘‘geometric’’ ratchets, which do not necessarily require a
time-dependent forcing but consist, instead, of a tw
dimensional periodic array of asymmetric obstacles@7–12#,
see Fig. 1. Particles are driven by a constant external fo
through the array while they are undergoing diffusive m
tion. Because of the asymmetry of the obstacles, the
ticles’ average drift velocity acquires a component perp
dicular to the direction of the external force, whic
constitutes the ratchet effect. Since this is easier to rea
experimentally than the time-dependent ratchets, it has b
proposed and already demonstrated@10# as a device for the
separation of charged biomolecules, which were subjec
an external electric field and underwent diffusive motion
an array of micrometer-sized obstacles produced by a li
graphic process.

In this paper, we want to take up the latter example a
analyze specifically the quality of the separation effect a
its dependence on various parameters. A similar numer
analysis has been carried out in Ref.@11#, where the ratche
effect was investigated for a smooth periodic potential. Ho
ever, we will emphasize that optimizing the ratchet effe
alone is not equivalent to the optimization of the separat
quality. Apart from that, we will discuss the criterion fo
assessment of the separation quality, point out sev
‘‘trivial’’ possibilities for optimization and analyze the effec
tive change in the diffusion tensor brought about by the pr
ence of the obstacles. The discussion will center aroun
model of particles undergoing drift-diffusive motion on
1063-651X/2002/65~4!/041927~10!/$20.00 65 0419
of

of
es
e
e
s

s.
k-
ly

in

-

ce
-
r-
-

ze
en

to

o-

d
d
al

-
t
n

al

s-
a

discrete lattice. This model is analyzed numerically us
both a Monte Carlo scheme as well as the numerical s
tions of a master equation.

The remainder of the paper is organized as follows: Fi
we will review briefly the geometric ratchet used for th
separation of particles, point out the distinction between
croscopic and macroscopic drift velocities and diffusion te
sors and establish a measure of separation quality. Then
will set up our lattice model. Using the results of the nume
cal simulations, we will present the dependence of the m
roscopic diffusion tensor and drift velocity on the parame
characterizing the force applied to the particles, as well as
the shape of the obstacles. Finally, we will optimize the se
ration quality for a situation of two particle species that a
subject to different forces, for a restricted set of obsta
shapes.

II. SEPARATION IN A GEOMETRIC RATCHET

In a ‘‘geometric ratchet,’’ particles drift and diffuse in
periodic potential, where the potential inside each elem

FIG. 1. The model situation: A particle diffusing and driftin
through a periodic array of obstacles. When it has reached the
row of the array, its horizontal deflection is registered, which lea
to a Gaussian distribution for an ensemble of many particles~after
coarse graining over several obstacles!. The inset shows the transi
tion rates used in the Monte Carlo simulations on a lattice.
©2002 The American Physical Society27-1
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C. KELLER, FLORIAN MARQUARDT, AND C. BRUDER PHYSICAL REVIEW E65 041927
tary cell is asymmetric, leading to a ratchet effect. In t
present work, we will only consider the special case o
two-dimensional array of impenetrable obstacles. The d
velocity and diffusion constant of the particles are assum
to be the same everywhere outside the obstacles. While
diffusion constant is fixed, the drift velocity depends not on
on the mobility but also on the force applied to the particl
If the latter derives from an electric field, it will be propo
tional to the charge of the particles, which is important
effecting a separation of different particle species, in the w
demonstrated in Ref.@10#. In this work, differently charged
biomolecules have been injected at a corner of a perio
array of obstacles. An electric field is applied to the setup
that the particles are subject to a force pointing downwa
Due to the asymmetry of the obstacles, the average
velocity has a horizontal component. Therefore, after the p
ticles have traversed several rows of obstacles, the cent
the particle distribution is deflected by a certain amou
When the magnitude of this deflection is sufficiently diffe
ent for two particle species, they may be separated by
lecting the particles arriving at a certain row below the
jection point. This permits a continuous separation
particles, in contrast to electrophoresis. The quality of se
ration does not depend on the strength of the ratchet e
alone but rather on the difference in the deflections for t
given species.

A. Macroscopic drift and diffusion

If the center of the particle distribution moves at a ‘‘ma

roscopic’’ average drift velocityvW̄ , then the slope of the line
it traces~starting from the point of injection! is given by the
ratio v̄x / v̄y . The average deflection in the final row is o
tained by multiplying this ratio with the height of the arra
Obviously, if the average drift velocity vector for one of th
species is just proportional to that of the other one, no se
ration can result, regardless of the strength of the ratc
effect ~i.e., the magnitude of the slope! itself.

Apart from the average drift, the particle distribution w
also undergo diffusion, with a ‘‘macroscopic diffusion te
sor’’ D̄ that will be different from the microscopic one, du
to the presence of the obstacles~which may hinder the ex-
pansion of the particle cloud in some directions, for e
ample!. It is important to know about the diffusive spreadin
of the distribution, since it affects the separation quality
large difference in deflections for the two species will
useless if it is bought at the price of a large width of t
respective distributions, which will overlap so that they ca
not be separated unambiguously.

The general functional dependence ofvW̄ and D̄ can be
obtained from dimensional analysis. The microscopic para
eters entering are the microscopic drift velocityv ~pointing
along they direction!, the ~isotropic! diffusion constantD,
the height of the obstaclesh, and a collection of parameter
describing their shapeS~including the aspect ratio!. The only
possibility of forming a dimensionless parameter out o
combination ofD, v, andh is given by
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It is proportional to the microscopic drift velocityv and,
therefore, to the microscopic mobilitym multiplied by the
force F. The parameterj will be used to present the resul
of our numerical simulations of a lattice model and to co
pare them with the real physical parameters. The most g
eral form of the macroscopic drift velocity and diffusion te
sor is given by

vW̄ 5vvW 0~j,S!,

D̄5DD0~j,S!. ~2!

Here,vW 0 and D0 are dimensionless vector and tensor fun
tions.

From these considerations, one can already conclude
two species differing only in their mobilities~but not in the
forces acting on them! will not become separated, in spite o
the ratchet effect. This is due to the Einstein relationD
5mkBT, which ensures that the ratiom/D will be the same
for both species. Since the forces are assumed to be
same,v/D is also unchanged, such that the respective val
of j are equal. Therefore, the average drift velocity vec
only gets scaled when one passes from one species to
other, so that the drift slope remains the same, as has
discussed above.

For small values of the external force~i.e., j), the mac-
roscopic drift velocity depends linearly on the force an
therefore, onv ~as long as the linear component is not su
pressed due to symmetry!. Therefore, a ‘‘macroscopic mobil

ity tensor’’ m̄ relatingvW̄ to the forceFW may be defined, such

that vW̄ 5(m̄/m)vnW , with nW being the direction of the micro
scopic drift. The numerical calculations~see remarks in Sec
III ! will confirm that it fulfills the Onsager symmetry rela
tions: m̄ is found to be symmetric. Likewise the macroscop
diffusion and mobility tensors are connected by the Einst
relation for small values of the external force:D̄5m̄kBT,
where the temperatureT is obtained from the ratioD/m of
the corresponding microscopic quantities. Physically, this
rives from the fact that the equilibrium distribution in a set
with a wall at the bottom is given by the Boltzmann dist
bution, which carries over from the microscopic density
the coarse-grained density, whose evolution is governed
D̄ and m̄. Apart from the fact that one has to be still in th

regime of linear variation ofvW̄ for the Einstein relation to
make sense, it can only hold as long as the force is no
strong as to make the density fall off rapidly over the scale
a single obstacle, because then the coarse-graining proce
is no longer justified. This happens approximately atj;1,
which is also the condition that has to be reached to see
appreciable separation effect.
7-2
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SEPARATION QUALITY OF A GEOMETRIC RATCHET PHYSICAL REVIEW E65 041927
B. Analytical estimate

The magnitude of the ratchet effect can be estimated a
lytically @5,7,9# for high enough external force~large j).
Then, one can treat the motion in the direction of the exter
force as deterministic~neglecting diffusion!, so that diffusive
spreading takes place only in the perpendicular direction
this simplified picture, the geometric ratchet becomes an
gous to a time-dependent one-dimensional ‘‘flashin
ratchet, with they coordinate playing the role of time. For
typical obstacle~as has been used, e.g., in the experimen
van Oudenaarden and Boxer@10#!, the diffusing particle dis-
tribution ~in the shape of half a Gaussian curve! will be split
into two parts by the ‘‘top part’’ of the obstacle, see Fig.
Here and in the following, we assume that there is one c
nected obstacle. The left part proceeds downward further
while the right part moves one cell to the right. Therefo
the slopev̄x / v̄y is given essentially by the percentage
particles that have moved to the right in such an ‘‘element
step,’’ i.e., by an integral over the respective part of t
Gaussian distribution. For largej it can be approximated by
an exponential~which becomes a good approximation if th
magnitude of the following exponent exceeds 2),

P~j![
v̄x

v̄y

'
2b

Apw
Ah8

h

1

Aj
expS 2

w2

4hh8
j D . ~3!

Here, the dependence onj has been made explicit, whil
all the other dimensionless parameters are ratios of len
determining the shapeS of the obstacle~see Fig. 2!. Obvi-
ously, if the force becomes very large, the particles will on
move down inside ‘‘channels,’’ since they do not have tim
to spread to the left or right. Then the slope} v̄x / v̄y becomes
very small, as is expressed by this formula. On the ot
hand, for very small forces, neglecting the possibility of d
fusing backwards in they direction~or more than one cell in
the x direction! renders this estimate invalid. Qualitativel
however, it is correct that the slope tends to a constant in
limit of vanishing forcej→0. Therefore, separation is ine
fective both at very small forces~since the slopes of the tw
species are the same! and at very large forces~since the
slopes differ but are both very small!. Since the prefactor
multiplying j in the exponent is of the order of one, th
optimum separation quality for the obstacle shape discus

FIG. 2. Parameters entering the analytical estimate of the m
roscopic drift velocity. The spreading Gaussian distribution is
into two halves~see text!.
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here will also be reached whenj1 andj2 are of the order of
one. This is confirmed by the numerical analysis below.

C. Quality of separation

In the long-time limit, the ensemble of the particles of
given species~having started at the injection point! assumes
the form of a two-dimensional Gaussian distribution, whi

drifts at a velocityvW̄ . Therefore, the distribution of particle
along thex coordinate of the final row is also a Gaussia
which is centered around some value^x& and has a widths.
We will assume that separation is performed by collecting
the particles up to some pointx0 in one bin and the rest in
another bin. Ideally, the two bins would only receive pa
ticles of a single species (1 or 2). Due to the overlap of
two distributions, this is not possible and there is a cert
percentage of particles that are attributed to the wrong
Qualitatively, the optimal choice ofx0 is one where this ‘‘er-
ror’’ is minimized. However, since there are two differe
types of errors~percentage of particles 1 attributed to bin
and vice versa!, no unambiguous definition of the optima
choice ofx0 and the corresponding optimal separation qu
ity exists. We suggest to take the separation of^x1& and^x2&
and divide it by the maximum of the widthss1 and s2 to
arrive at a measure of the separation quality, which is ea
evaluated as

Q[u^x1&2^x2&u/max~s1 ,s2!. ~4!

For the parameters considered here, it seems to be appr
ate.

Another possible definition consists in replacing the ma
mum by the geometric mean of the two widths,

Q8[u^x1&2^x2&u/As1s2. ~5!

Note, however, that there are situations when this may
a misleading measure, particularly when one of the wid
s1 or s2 is much larger than the other. In these cases,Q will
probably be better suited.

Other measures have been used in the literature. For
ample, in Refs.@9,7#, the authors essentially asked how lar
the relative difference in the diffusion constants of two sp
cies should be in order to have a separation that exceed
spread of one of the two distributions.

In any case, any reasonably defined optimal separa
quality can only be a function of two dimensionless para
eters: the measureQ ~or Q8) used here and the ratios1 /s2.

The goal is to optimize the separation quality for tw
given species of particles by varying the applied force a
the shape of the obstacles~including their size and aspec
ratio!. The following parameters are naturally assumed to
fixed: the microscopic mobilities and diffusion constants
the species~connected by the Einstein relation for a give
temperature!, the ratiol of the forces~equal to the ratio of
charges in an electric field!, and the total heightH of the
periodic array in they direction. The latter will be dictated by
practical considerations~if it could be made arbitrarily large
one would do this to get an ideal separation effect!.
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C. KELLER, FLORIAN MARQUARDT, AND C. BRUDER PHYSICAL REVIEW E65 041927
We want to argue when and why a nontrivial optimum
to be expected. It has been pointed out above that choo
the force too large or too small results in a decrease of s
ration quality. Likewise, one could make the ratchet eff
itself arbitrarily strong, by choosing a slanted line of lar
slope dx/dy ~as one big obstacle!. However, both specie
would drift along that line and could not be separated eith

In order to obtain a more quantitative understanding,

use the general functional forms given forvW̄ and D̄, and
insert them into the measureQ introduced above. More pre
cisely, we use the scaling expressions^x&5H v̄x / v̄y

5Hx0(j,S) ands5ADH/vs0(j,S) for both species, which
are assumed to have the same microscopic values ofm andD
but different forces acting on them, such thatv25lv1[lv
andj25lj1[lj. Thus, we obtain

Q5
u^x1&2^x2&u
max~s1 ,s2!

5AH

h

Ajux0~j!2x0~lj!u

max„s0~lj!/Al,s0~j!…
. ~6!

After the fraction in the last line has been optimized
varying bothj and the shapeS of the obstacles,Q could be
made arbitrarily large by having the heighth of an individual
obstacle go to zero~at fixed aspect ratio!, such that the array
~of fixed height H) contains more rows. Sincej5vh/D
must remain constant, this means that the microscopic
velocity v has to go to infinity. Physically, the enhanceme
of separation quality can be understood in the following w
Although the slopes will remain the same, the relative size
the diffusive spread decreases likeAh/H. Note as well that
due to the same reason, the maximum of the fraction d
not exist, strictly speaking. It is possible to keeph fixed but
still have an effective increase in the number of rows
placing an array of miniaturized obstacles inside an ‘‘
ementary’’ cell. However, in practice, there are obvious
strictions on the force that can be applied to the particles
well as on the minimum size of the obstacles. Therefore,
only possible to choose the force as large as possible an
corresponding value ofh in such a way thatj takes on the
optimal value under these restrictions.

It is also helpful to consider the behavior ofQ for the
analytical estimate given in Eq.~3!, which is valid for large
values ofj. After H/h rows ~and a timet5H/ v̄y), the aver-
age deflection isv̄xt5 v̄yPt and the variance of the resultin
Poisson distribution is 2D̄xxt5bHP. This gives the relation
D̄xx / v̄x5b/2, which is confirmed by the numerical resul
below ~for obstacles of typeA andB in Fig. 6!. We obtain

Q;AH

b

uP~j!2P~lj!u

max„AP~j!,AP~lj!…
. ~7!

By setting P(j);exp(2gj), with some exponentg, we
can find the approximate behavior ofQ: It drops like exp
(2jg/2) at largej, regardless ofl (.1). On the other
hand, the alternative definitionQ8 given above would only
decrease like exp@2jg(32l)/4#. For l.3, this may even
rise at largej, which is probably an indication that, for thi
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regime, the expression forQ8 is not any longer a good mea
sure of separation quality: The difference in the spread of
two species grows too fast.

III. THE LATTICE MODEL

We have set up a model to study numerically the diffus
of particles under the influence of an external force in
periodic array of obstacles: A single particle is positioned
a point of a two-dimensional lattice, which consists of squ
fields. During each time step, the particle either changes
position to one of the neighboring squares~with a certain
probability! or remains on its original square.

The probabilities to move to the right or to the left a
both equal toG. In the absence of obstacles, there is con
quently no net flow of particles in the horizontal directio
The probability to move downward~i.e., in the positivey
direction! is G1a, the probability to move upward isG
2a ~see inset of Fig. 1!. The probability to remain on the
original square is therefore equal to 124G. Because of the
different probabilities to move upward and downward, a n
flow results in the vertical direction.

The following relations hold for the microscopic drift ve
locity v in they direction and the microscopic diffusion con
stantD:

v52a,

D5G. ~8!

We assume lengths to be measured in lattice constants
time in units of the elementary time step. For the interpre
tion of the results, only the value of the dimensionless
rameterj is needed,

j5vh/D52ah/G, ~9!

whereh is the height of an obstacle~elementary cell of the
array! measured in lattice constants. From this expression
is clear that increasing the spatial resolution~h! means de-
creasinga/G, such that this ratio vanishes in the physica
relevant continuum limit. Actually, we have already assum
a!G in writing down Eq.~8!. Otherwise, one would have t
take into account that the diffusion resulting from the mod
stated above is anisotropic, withDxx5G andDyy5G22a2.
In our Monte Carlo simulation, we have usually chosenG to
be of the order of 0.1 anda/G to be less than about 0.1.

Obstacles are represented by ‘‘forbidden’’ squares. If
particle would have to move onto such a square, it does
move and remains on its original square. All obstacles
arranged periodically.

Particles start in the top left square of the array. Th
continue moving until they have reached the final row, wh
their x coordinate is saved. Using the results of many ru
the average deflection̂x& and the standard deviations of
the resulting distribution can be calculated, see Fig. 1. Al
natively, a particle runs for a given number of time steps a
its final coordinates are registered. In this way, the mac

scopic drift velocityvW̄ and diffusion tensorD̄ can be ob-
tained.
7-4
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SEPARATION QUALITY OF A GEOMETRIC RATCHET PHYSICAL REVIEW E65 041927
In order to test the Monte Carlo simulation~which has
been implemented inC11!, we have verified that the distri
bution of deflections in the final row is Gaussian~when
coarse grained over several obstacles! and becomes indepen
dent of the precise starting position after a sufficiently la
time ~number of rows of the array!, and all quantities show
the correct scaling behavior described by Eq.~2!, provided
a/G is chosen small enough. The lattice resolution~con-
nected witha/G) has been chosen such that the results
not depend on it appreciably any more.

Furthermore, at small values of the external force~i.e., of
v andj), the macroscopic drift velocity depends linearly o
this force and fulfills the Onsager symmetry relations. Lik
wise the Einstein relation holds:D̄5m̄kBT.

IV. MASTER EQUATION

While every quantity of interest~macroscopic drift veloc-
ity and diffusion tensor, average deflection, and spread
distribution! can be calculated using the Monte Carlo sim
lation, it is nevertheless useful to consider a master-equa
solution as well. This is both because reaching a high sta
tical accuracy requires a large number of Monte Carlo r
and because a discussion of the master equation yields
tional physical insights.

The particle distributionp(x,y) is defined on the lattice
with integer coordinatesx and y. In a single time step, the
distribution changes by

dp~x,y!5G„p~x11,y!1p~x21,y!…1~G2a!p~x,y11!

1~G1a!p~x,y21!24Gp~x,y!, ~10!

where the quantities on the right-hand side are to be ev
ated at timet anddp[p(t11)2p(t). The equation shown
here holds for every site (x,y) that has no neighboring ob
stacle sites. For each ‘‘forbidden’’ site, the corresponding
coming and outgoing rates have to be left out. The temp
continuum limit is obtained by lettingG anda tend to zero,
with their ratio kept fixed.

At large times, an ensemble of particles that has starte
the injection point will be spread over many obstacle ce
Viewed on the scale of only a few cells~much less than the
total spread!, the distributionp is periodic. Therefore, we ca
calculate the average drift velocity by solving for the statio
ary distributionp defined inside the cell of a single obstac

imposing periodic boundary conditions.vW̄ is then given by
the average velocity inside the cell, i.e., by

vW̄ 5(
links

jW. ~11!

Here, the sum runs over all links connecting adjacent s
and the ‘‘current density’’jW along each link is obtained b
multiplying the values ofp(x,y) on the two connected site
by the transition probabilities of a jump along the link, takin
into account the direction of the link and leaving out block
sites. The distributionp itself is assumed to be normalize
(p(x,y)51.
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Actually, every site with no neighboring obstacle sit
contributes justp(x,y)vW to this sum, wherevW is the micro-
scopic drift velocity. In this sense, the deviation of the ma

roscopic driftvW̄ from vW is seen to arise only from the bound
aries of the obstacle. This can be understood most easi
the continuum limit, wherejW52D¹W r1vW r (r being the
continuous distribution!. An integration by parts yields

vW̄ 5E
cell

jWd2rW5vW 1D R
obst.

rnW ds. ~12!

Here, the second integral extends over the boundary of
obstacle andn̂ is the normal vector of that boundary~point-
ing away from the obstacle!. Therefore, those boundarie
where the densityr ‘‘piles up’’ ~see Fig. 3 below! contribute
most to the change in drift velocity. The second integral c
therefore, be interpreted as being proportional to the ‘‘forc
due to the obstacle, impeding and deflecting the free flow
particles.

For the numerical solution, we first set up a~sparse! ma-
trix corresponding to the transition rates on the lattice w
periodic boundary conditions and then solve for the stati
ary solutionp. This is done by settingp(x,y)51 on an ar-
bitrary nonblocked site and striking out the respective c
umn and row in the homogeneous linear system of equati
such that it becomes inhomogeneous and nonsingular.
have used a sparse matrix bi-conjugate-gradient solver f
the LAPACK package of linear algebra routines@13#. For a
typical cell size of 1283128, the number of nonvanishin
matrix entries is about 105. In the end,p is normalized and
the current density and macroscopic drift velocity are cal
lated. This type of calculation has already been performed
the authors of Ref.@11# for a model with a smoothly varying
periodic potential.

It is also possible to calculate the macroscopic diffus
tensorD̄ using the master equation. This involves the so
tion of an inhomogeneous linear equation, with the line
operator defined by Eq.~10! and the inhomogeneity derive
from the solutionp of the homogeneous equation. The de
vation of the equation and the formula forD̄ can be found in
the Appendix. To the best of our knowledge, such an anal
has not been carried out before.

V. NUMERICAL RESULTS

In this section, we present the results of both the Mo
Carlo simulations and solutions of the master equation.

In the Monte Carlo simulation, the relative statistical a
curacy of the macroscopic drift velocity (d v̄x / v̄x , etc.! is
given approximately byAD/(v2Nt), while that ofD̄ is esti-
mated to be 1/AN, whereN is the number of samples andt is
the number of time steps. Independence of the detailed in
conditions is reached when the diffusive spreadADt be-
comes much larger than the width of an obstacle cell~typi-
cally 160). We have chosen values oft>107 andN>103 in
order to fulfill these criteria.
7-5
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FIG. 3. Distribution p ~top!,

velocity direction fieldv̂ ~middle!,
and ‘‘streamlines’’ ~bottom! for
low and high force~left and right
columns!. The strength of the
force j512 for the left column
and j524 for the right column,
with the microscopic drift point-
ing downward. Darker shading
signifies increasedp. Contour
lines forp have been chosen at th
same~equidistant! values for the
two pictures at the top. Note tha
the streamlines serve to visualiz
the direction of the current den
sity, while the real motion of a
single particle is governed by drif
and diffusion. The ‘‘velocity di-
rection’’ is the normalized curren
density vector field. Note the
stronger pileup in density at the
left ‘‘roof’’ of the obstacle for the
stronger force, as well as the dis
tortion of streamlines there and i
the narrow channel at the right o
the pictures. The lattice shown
here consists of 1603160 sites.
-
r a
lo
-

bo
o

rift
ob-
ua-

rlo
the

a

A. Density distribution and flow field

The particle distributionp and corresponding current den
sity jW resulting from the solution of the master equation fo
typical obstacle shape are depicted in Fig. 3, both for a
and a high value ofj. This corresponds to the optimal situ
ation for the separation of two species, where one of them
almost not deflected at all~high force, i.e., highj), while the
other one has an appreciable probability to go to a neigh
ing cell to the right, due to diffusion around the top part
the obstacle.
04192
w
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B. Macroscopic drift velocity and diffusion tensor

The results for the components of the macroscopic d
velocity are displayed in Fig. 4. These data have been
tained for the obstacle of Fig. 3, using both the master eq
tion with periodic boundary conditions and the Monte Ca
simulation. As has been explained in a preceding section,
onset of a nonlinear dependence ofv̄y and v̄x on j at rather
low j implies that the obstacle is well suited for obtaining
separation effect~rather than merely a ratchet effect!.
7-6
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SEPARATION QUALITY OF A GEOMETRIC RATCHET PHYSICAL REVIEW E65 041927
In Fig. 5, the components of the~symmetrized! macro-
scopic diffusion tensorD̄ have been plotted vsj for the same
obstacle. At low values of the driving force, all componen
of D̄ are generally reduced compared with the microsco
diffusion constantD, since the obstacles hinder the free d

FIG. 4. Macroscopic drift velocity componentsv̄x ~circles, left

scale! and v̄y ~squares, right scale! in units of D/h, plotted vsj
5vh/D, for the obstacle shape shown in Fig. 3, with a lattice re
lution of 1603160. The lines indicate the results of the mas
equation, the symbols~which are larger than the error bars! are
from Monte Carlo simulations (t523107, N5103).

FIG. 5. Components of macroscopic diffusion tensor vsj for the

obstacle of Fig. 3. Circles,D̄yy /D; squares,D̄xx /D; triangles,

D̄xy /D. Symbols show results of the Monte Carlo simulation, lin
show those of the master equation. We attribute the deviatio
higher values ofj ~and, therefore,a/G) to effects of the finite grid
resolution.
04192
ic

fusion of particles. At higher forces, they component is in-

creased, while thex componentD̄xx is further reduced. This
can be understood in the following way: The motion pr
ceeds inside vertical ‘‘channels,’’ such that the particle ca
not move easily in the horizontal~x! direction, while the
diffusion in they direction is more or less free. Comparin

the data forD̄xx and v̄x shows thatD̄xx / v̄x'b/2 at larger

values ofj @to the right of the maximum ofv̄x(j)#, as ex-
pected: both quantities decrease exponentially. Note that

off-diagonal componentD̄xy of the macroscopic diffusion
tensor changes sign at aboutj'8, which seems to approxi

mately coincide with the sign change in¹W v̄x /¹W v̄y ~see Fig.
4!. We have not come up, however, with an explanation

the approximate correlation betweenD̄xy /D and ¹W v̄x /¹W v̄y
yet.

The statistical accuracy of the Monte Carlo results forD̄

is worse than that of thev̄ results, as expected. The deviatio
between the results of the master equation and Monte C
simulation at larger values ofj is reduced when the grid
resolution is enhanced~i.e., whena/G gets smaller for fixed
j). In the examples shown here,a/G takes on a maximum
value of about 0.1.

C. Optimization of separation quality

For the obstacle discussed above, the slopev̄x / v̄y ~pro-
portional to the average deflection^x& in the last row! is
shown in Fig. 6, together with those of other obstacle sha
discussed further below. The exponential decay is consis
with the analytical estimate derived in Sec. II B, see Eq.~3!.
From the slope of the logarithmic plot, a value of about 0.
has been obtained for the prefactorw2/(4hh8) in the expo-
nent of Eq.~3!, which is roughly consistent with the geo
metrical parameters of the obstacle. Given the slope and
spreads ~derived from the components ofD̄), one can ob-
tain the separation qualityQ defined in Eq.~5!, if one as-
sumes some ratiol5j2 /j1 of the forces acting on the two
species~see Fig. 7!.

D. Influence of the obstacle shape

Both the magnitude of the ratchet effect and the sepa
tion quality depend very much on the shape of the obsta
We have not performed a systematic search over obst
shapes for a kind of ‘‘global’’ optimization of the separatio
quality because of the numerical effort involved. Howev
there are a few general properties resulting from certain g
metrical features. These are illustrated by the numerical
sults for the slopev̄x / v̄y and the separation qualityQ plotted
in Figs. 6 and 7. They can be summarized as follows.

The vertical ‘‘wall’’ at one side of the obstacleA depicted
in Fig. 3 acts to prevent particles from diffusing back to t
left, thereby increasingv̄x and leading to a better ratchet an
separation effect. This can be seen by comparing again
version with a shorter wall (B). The triangular ‘‘roof’’ of the
obstacle splits the particle distribution into two halves as
drifts downwards. If the external force is high, the particl

-
r

at
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C. KELLER, FLORIAN MARQUARDT, AND C. BRUDER PHYSICAL REVIEW E65 041927
do not have time to diffuse a sufficient distance to the ri
and will be deflected back by the left side of this ‘‘roof
therefore streaming downward, with no net deflection to
right. The horizontal position of the upper tip determines
strength of the force where this transition takes place: If i
moved to the left (C), a much higher force is necessary.
that case, the slopev̄x / v̄y falls off more slowly with increas-
ing forcej. At the same time, the value of the slope is ge
erally increased at small forces, since more particles are
flected one cell to the right.

In order to illustrate the difference between having
strong ratchet effect and a good separation effect, we h
tried a triangular obstacle (E), which yields a comparatively
large slope that, however, does not change very strongly
applied force. By flipping the triangle along the horizon
axis, an obstacle with reflection symmetry is created (D).
This has the peculiar feature@11,12# that, for symmetry rea-
sons,v̄x is an even function of the microscopic velocityvy
~driving forcej), so the linear mobility at low driving force
vanishes. In principle, this nonlinear dependence ofv̄x on j
is well suited for achieving a separation effect. However
must be kept in mind that at low values of the external fo
the diffusive motion is dominant, so the spread and the o
lap of the particle distributions of the two species in the fin
row is significant. Therefore, the separation quality decrea
towardsj50.

The separation quality can become zero for a spe
value of the external force whenever the slope shown in F
6 has an extremum as a function of microscopic velocityj,
such that two differentj can produce the same slope. Th
occurs for two of the obstacles (D andE in Fig. 7!.

For most of the obstacle shapes considered here, the
at most a local maximum of the separation quality at l

FIG. 6. Slopê x&/H5 v̄x / v̄y plotted vsj. The obstacle shape
are shown at the bottom of the plot and are discussed in the teA
refers to the obstacle shape shown in Fig. 3.
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forces. The global maximum is expected to occur at mu
higher values of the force, which may be unattainable in
experiment~and are difficult to reach in a numerical simul
tion with a finite lattice resolution!. However, for a well-
suited obstacle like the one depicted in Fig. 3, the qua
peaks at moderate values of the force.

VI. CONCLUSIONS

In this work, we have analyzed a geometric ratchet c
sisting of a two-dimensional array of obstacles, where p
ticles perform drift-diffusive motion under the action of
constant external force. We have carried out numerical
culations using both a Monte Carlo simulation and a mas
equation solution in order to obtain the dependence of
‘‘macroscopic’’ drift velocity and diffusion tensor on externa
force and obstacle shape. Using these results, we have q
tified the quality of the separation effect that can be achie
when two species of particles with differing microscopic m
bilities are injected into the array. Our results show t
strong dependence on several features of the shape o
obstacles and demonstrate the distinction between a st
ratchet effect and a good separation effect.

ACKNOWLEDGMENT

We thank Hanno Gassmann for helpful discussions.

APPENDIX: CALCULATING THE MACROSCOPIC
DIFFUSION TENSOR USING THE MASTER EQUATION

Solving the master equation for the probability dens
inside a cell containing a single obstacle allows one to ob
easily a numerically exact result for the macroscopic d

FIG. 7. Normalized separation qualityQAh/H vs j, wherej
corresponds to the force on the first species andj25lj, with l
52 in this plot. Full lines, results of Monte Carlo simulation; dotte
lines: Master equation. The difference is due to the larger values

the diffusion tensor componentD̄xx at high forcej yielded by the
master equation. The location of the optimum does not cha
much. See discussion in the text.
7-8
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SEPARATION QUALITY OF A GEOMETRIC RATCHET PHYSICAL REVIEW E65 041927
velocity vW̄ . It is given by the average flow velocity of pa
ticles inside the cell, i.e., the integral~or sum! over the cur-
rent density@see Eqs.~11! and~12!#. However, to assess th
quality of separation of a given geometric ratchet, it
equally important to know the macroscopic diffusion tens
which governs the spreading of the macroscopic part
density~i.e., the density averaged over many obstacles!. Its
evaluation using the Monte Carlo simulation requires a la
number of samples, to obtain a good statistical accur
Therefore, it is desirable to calculateD̄ using the master
equation as well. The steps involved in the derivation ofD̄
are slightly more involved than the straightforward calcu

tion of vW̄ .
Our strategy is to derive the equation of motion for t

macroscopic densityr̄,

] tr̄5D̄ i j ] i] j r̄2vW̄ ¹W r̄, ~A1!

from the analogous equation for the microscopic densityr,
making use of the slow variation ofr̄.

If the particle densityr is spread over many obstacle ce
~as is the case after waiting for a sufficiently long time!, it
may, in a first approximation, be described by

r5r0r̄, ~A2!

where r0 refers to the detailed density that varies on t
scale of a single obstacle but is periodic throughout the ar
r0 has been obtained before by solving the master equa
for a single cell, using periodic boundary conditions at t
borders of the cell and the restriction for the current den
jW0 to run parallel to the walls of the obstacle. Ifr̄ were
constant, this would constitute a~not normalizable! station-
ary periodic solution to the Fokker-Planck equation. Ho
ever,r̄ is assumed to vary~very slowly!, such that this is not
a stationary solution and does not fulfill the boundary con
tions exactly. Therefore, it has to be supplemented by ‘‘c
rection terms,’’ which depend~necessarily linearly! on the
spatial derivatives ofr̄. Consequently, we taker to be given
by

r5r0r̄1gi] i r̄1Ki j ] i] j r̄1••• . ~A3!

Here, gi and Ki j are as yet unknown periodic function
~that vary on the scale of a single obstacle!. We emphasize
that, of course, many different microscopic densitiesr yield
the same macroscopic densityr̄. Therefore,r is not uniquely
specified if r̄ is given. However, in the long-time limit as
sumed here,r has ‘‘equilibrated’’ and the deviations fromr0
are in a one-to-one correspondence with the lowest o
spatial derivatives ofr̄.

Our further strategy is as follows: We will first rederiv

the known result for the macroscopic drift velocityvW̄ , which
is the constant coefficient appearing in the part of the eq
tion of motion for r̄ that contains the spatial derivatives

first order:] tr̄52vW̄ ¹W r̄. To this end, we will insert the an
satz~A3! into the equation of motion forr, keeping only the
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terms containing up to first derivatives ofr̄ and eliminating

gi using the boundary condition. Using the result forvW̄ , we
will obtain an inhomogeneous linear equation forgi itself,
which must be solved numerically. The relation betweengi

and the macroscopic diffusion tensorD̄ will be obtained by
going to the second order in the spatial derivatives ofr̄.
Although this involves the unknown functionKi j , we will be
able to eliminate it in the same way thatgi had been elimi-
nated in the first step.

Let us first derive a boundary condition forgi . The current
densities for the first and second term on the right-hand s
of Eq. ~A3! are given by

jW5 jW0r̄2Dr0~¹W r̄ !,

~ jW1! l52D~] lg
i !~] i r̄ !1vW lg

i~] i r̄ !2Dgi] l] i r̄. ~A4!

Here, jW05(2D¹W 1vW )r0 is the current density ofr0

alone. We demandjW1 jW1 to be parallel to the obstacle wal
keeping only terms including first order derivatives ofr̄ and
then canceling these terms. This leads to the follow
boundary condition forgi :

n̂ jWgi5Dn̂ir0 , ~A5!

where jWgi5(2D¹W 1vW )gi is the current density related togi

and n̂ is the outer normal vector of the obstacle wall.
In the next step, we calculate] tr52¹W ( jW1 jW11•••) up to

first order in the spatial derivatives ofr̄ and demandr0] tr̄

'2r0vW̄ ¹W r̄, which is essentially the drift term forr̄. Physi-
cally, this equation means that a nonvanishing slope ofr̄ will
lead to an overall increase~or decrease! of the microscopic
densityr inside an obstacle cell. The detailed shape of
distribution within that cell is not changed, only its magn
tude. After dropping the overall factor] i r̄, we arrive at

¹W jWgi522~ jW0! i1~vW i1vW̄ i !r0 . ~A6!

It is not necessary to knowgi in order to obtainvW̄ . We
integrate both sides of this equation over the whole c
assuming periodic boundary conditions forgi ~as well as for
r0). The boundary term resulting from the walls of the o
stacle containsgi , but it can be transformed using Eq.~A5!,
such that we end up with an equation wheregi has been
eliminated,

2D R n̂ir0ds522E ~ jW0! id
2rW1~vW i1vW̄ i !. ~A7!

The integral on the left-hand side runs along the obsta
wall, while that on the right-hand side extends over t
whole cell. Since

E ~ jW0! id
2rW5vW i1D R n̂ir0ds, ~A8!

we have

vW̄ i5E ~ jW0! id
2rW, ~A9!
7-9
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C. KELLER, FLORIAN MARQUARDT, AND C. BRUDER PHYSICAL REVIEW E65 041927
as has been assumed in the main text already@see Eqs.~11!
and ~12!#.

InsertingvW̄ into Eq. ~A6! yields an inhomogeneous linea
partial differential equation forgi which has to be solved
numerically @assuming periodicity and the boundary con
tion Eq. ~A5!#. Note thatgi is only determined up to a con
stant multiple ofr0, sincer0 solves the homogeneous equ
tion. However, as we will see, this does not affect the res
for the diffusion tensorD̄ to be derived fromgi . Further
remarks concerning the numerical solution of the mas
equation on the discrete lattice can be found at the end of
appendix.

The current density related to the part ofr that involves
second derivatives ofr̄ @see Eq.~A3!# is equal to

~ jW2! l5~] i] j r̄ !@~2D¹Wl1vW l !K
i j #1••• , ~A10!

where we have neglected higher derivatives ofr̄. We arrive
at a boundary condition forKi j at the walls of the obstacle in
the same way as forgi , by demandingjW tot[ jW1 jW11 jW2 to be
parallel to the wall. This time, we keep only the terms
cluding second derivatives ofr̄. This leads to

@ n̂~2D¹W 1vW !#Ki j 5Dn̂jg
i . ~A11!

To this order, the time derivative ofr, ] tr52¹W jWtot , in-
cludes both the diffusion ofr̄ and the drift of the termgi] i r̄,

¹W jWtot5vW̄ lg
i] l] i r̄2r0D̄ li ] l] i r̄1•••, ~A12!

keeping only the second order with respect to the spa
derivatives ofr̄ on both sides of the equation.

As before, we integrate this equation over the cell and
the boundary condition Eq.~A11! at the obstacle walls to
eliminateKi j . The resulting expression forD̄ then is given
by

D̄ j i 5DS d j i 2 R n̂ jg
idsD1~vW̄ j2vW j !E gid2rW. ~A13!

Note that addinglr0 to gi ~with an arbitrary constantl)
does not affect the result forD̄, due to Eqs.~A8! and ~A9!.
h
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For the numerical solution, it is, in principle, possible
discretize Eqs.~A5! and~A6! for gi as well as the expressio
~A13! for D̄. However, this is guaranteed to coincide wi
the results of the Monte Carlo simulation only in the co
tinuum limit ~where, e.g.,a/G→0). In order to have a bette
agreement even when one is not yet in the continuum limi
is advisable to start directly from the discretized mas
equation and redo the steps of the derivation shown here
the discrete lattice.

The equation that has actually been solved numericall
arrive atgi is given by

Lgi52pvW̄ i2G~pi 12pi 2!2d i2a~pi 11pi 2!. ~A14!

Here,Lgi corresponds to2¹W jWgi. Therefore,L is the ma-
trix kernel, which is also used for solving the homogeneo
equation,Lp50, including the same treatment of obstac
walls and periodic boundary conditions@see the right-hand
side of Eq.~10! for the definition ofL#. p is evaluated at the
‘‘current site’’ ~the site that the left-hand side refers to!, while
pi 1 and pi 2 are evaluated at the neighboring sites, in po
tive or negative directionsi (51,2, corresponding tox,y),
respectively. At the obstacle walls, these neighboring s
may turn out to be ‘‘forbidden,’’ in which casepi 1 or pi 2

vanishes. This implements the discrete version of the bou
ary condition discussed above.~Note that according to the
convention used here, the microscopic drift velocity is a
sumed to point in the negativey direction if a is positive!.

In order to evaluateD̄, we must carry out a sum over a
sites at the wall of the obstacle, i.e., those that have forb
den sites as neighbors. This sum is denoted by(W . The sum
extending over all allowed sites in the cell is denoted by(,

D̄ j i 5GS d j i 2(
W

n̂jg
i D 1~vW̄ j2vW j !( gi2ad j 2(

W
gi .

~A15!

The last term vanishes in the continuum limit but is im
portant to ensure thatD̄ does not change on adding a hom
geneous solutionlp to gi .
.
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