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Separation quality of a geometric ratchet
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We consider an experimentally relevant model of a geometric ratchet in which particles undergo drift and
diffusive motion in a two-dimensional periodic array of obstacles, and which is used for the continuous
separation of particles subject to different forces. The macroscopic drift velocity and diffusion tensor are
calculated by a Monte Carlo simulation and by a master-equation approach, using the corresponding micro-
scopic quantities and the shape of the obstacles as input. We define a measure of separation quality and
investigate its dependence on the applied force and the shape of the obstacles.
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I. INTRODUCTION discrete lattice. This model is analyzed numerically using
both a Monte Carlo scheme as well as the numerical solu-
During the last decade, ratchets have been the subject §Pns of a master equation. _ _
intense research effortéor a recent comprehensive review  1he remainder of the paper is organized as follows: First,
see[1]). Ratchets are able to produce a directed current of/€ Will review briefly the geometric ratchet used for the
particles although no net average force is applied. Besideieparation of particles, point out the distinction between mi-

. . .. “croscopic and macroscopic drift velocities and diffusion ten-
the fundamental interest in such a somewhat counterintuitiv ors and establish a measure of separation quality. Then, we

physical phenomenon, their analysis is important both for th?/vill set up our lattice model. Using the results of the numeri-
description of natural nonequilibrium transport processegy| simylations, we will present the dependence of the mac-
(like “Brownian motors” in cells [2,3]) and for concrete qqqnjc diffusion tensor and drift velocity on the parameter
technical applications as rectifiers and separation devicegnaracterizing the force applied to the particles, as well as on
The various types of ratchets considered so far include rockpe shape of the obstacles. Finally, we will optimize the sepa-
ing, flashing, and correlation ratchets, where a temporallyation quality for a situation of two particle species that are

periodic force, periodic switching of a potential, and coloredsubject to different forces, for a restricted set of obstacle
nonthermal noise, respectively, induce directed transport ighapes.

an asymmetric potentigt—6,1]. Apart from these, there are
“geometric” ratchets, which do not necessarily require any Il. SEPARATION IN A GEOMETRIC RATCHET
time-dependent forcing but consist, instead, of a two-
dimensional periodic array of asymmetric obstadlés12),

see Fig. 1. Particles are driven by a constant external forc

through the array while they are undergoing diffusive mo- A\ _~\ _—
I
=

In a “geometric ratchet,” particles drift and diffuse in a
Beriodic potential, where the potential inside each elemen-

tion. Because of the asymmetry of the obstacles, the par- |
ticles’ average drift velocity acquires a component perpen- 4
dicular to the direction of the external force, which

constitutes the ratchet effect. Since this is easier to realize 4 AI |
experimentally than the time-dependent ratchets, it has been T

proposed and already demonstrafé€] as a device for the P P \ P
separation of charged biomolecules, which were subject to I I

an external electric field and underwent diffusive motion in 4 AI AI A' AI
an array of micrometer-sized obstacles produced by a litho-

4

graphic process. =\ =N

In this paper, we want to take up the latter example and | | |
analyze specifically the quality of the separation effect and

its dependence on various parameters. A similar numerical
analysis has been carried out in Rfl], where the ratchet

i . S ; (4]
effect was investigated for a smooth periodic potential. How-

ever, we will emphasize that optimizing the ratchet effect
alone is not equivalent to the optimization of the separation

quality. Apart from that, we will discuss the criterion for  FiG. 1. The model situation: A particle diffusing and drifting
assessment of the separation quality, point out severaghrough a periodic array of obstacles. When it has reached the final
“trivial” possibilities for optimization and analyze the effec- row of the array, its horizontal deflection is registered, which leads
tive change in the diffusion tensor brought about by the presto a Gaussian distribution for an ensemble of many parti@ésr
ence of the obstacles. The discussion will center around eoarse graining over several obstagld@he inset shows the transi-
model of particles undergoing drift-diffusive motion on a tion rates used in the Monte Carlo simulations on a lattice.

<X>
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tary cell is asymmetric, leading to a ratchet effect. In the vh

present work, we will only consider the special case of a 553- 1)
two-dimensional array of impenetrable obstacles. The drift

velocity and diffusion constant of the particles are assumed

to be the same everywhere outside the obstacles. While the It is proportional to the microscopic drift velocity and,
diffusion constant is fixed, the drift velocity depends not onlytherefore, to the microscopic mobility multiplied by the

on the mobility but also on the force applied to the particlesforce F. The parametef will be used to present the results

If the latter derives from an electric field, it will be propor- Of our numerical simulations of a lattice model and to com-
tional to the charge of the particles, which is important forPare them with the real physical parameters. The most gen-
effecting a separation of different particle species, in the way'@l form of the macroscopic drift velocity and diffusion ten-
demonstrated in Ref10]. In this work, differently charged SOT IS given by

biomolecules have been injected at a corner of a periodic

array of obstacles. An electric field is applied to the setup so - .

that the particles are subject to a force pointing downward. v=vv0(¢,9),

Due to the asymmetry of the obstacles, the average drift
velocity has a horizontal component. Therefore, after the par-
ticles have traversed several rows of obstacles, the center of
the particle distribution is deflected by a certain amount.

When the magnitude of this deflection is sufficiently differ- Here. o andD. are dimensionless vecior and tensor func-
ent for two particle species, they may be separated by COLﬂons’ 0 0

lecting the particles arriving at a certain row below the in- = £, these considerations, one can already conclude that

jection point. This permits a continuous separation ofy, species differing only in their mobilitie@ut not in the

particles, in contrast to electrophoresis. The quality of sepa, g acting on thepwill not become separated, in spite of
ration does not depend on the strength of the ratchet effegfy achet effect. This is due to the Einstein relatn

a!one but rgther on the difference in the deflections for tWO:,ukBT, which ensures that the ratje/D will be the same
given species.

for both species. Since the forces are assumed to be the
samep/D is also unchanged, such that the respective values
of ¢ are equal. Therefore, the average drift velocity vector

only gets scaled when one passes from one species to the
If the center of the particle distribution moves at a “mac- other, so that the drift slope remains the same, as has been

roscopic” average drift velocity, then the slope of the line discussed above. _
it traces(starting from the point of injectionis given by the For small values of the external for¢ee., ), the mac-
ratio v_x/v_y The average deflection in the final row is ob- roscopic drift velocity depends linearly on the force and,

tained by multiplying this ratio with the height of the array. "€T€fore, orv (as long as the linear component is not sup-
Obviously, if the average drift velocity vector for one of the PreSSed duf to symrrlelrﬂ'hereforela macroscopic mobil-
species is just proportional to that of the other one, no sepaty tensor” u relatingv to the forceF may be defined, such
ration can result, regardless of the strength of the ratch%athz
effect (i.e., the magnitude of the slopéself.

Apart from the average drift, the particle distribution will

also undergo diffusion, with a “macroscopic diffusion ten- tions: u is found to b tic. Likewise th .
sor” D that will be different from the microscopic one, due 10nS: 4 1S found to be Symmetric. LIKewISe the macroscopic

to the presence of the obstacieehich may hinder the ex- diffusion and mobility tensors are connected by the Einstein

pansion of the particle cloud in some directions, for ex-relation for small values of the external forcB:= kT,
ample. It is important to know about the diffusive spreading Where the temperaturé is obtained from the rati®/u of

of the distribution, since it affects the separation quality. Athe corresponding microscopic quantities. Physically, this de-
large difference in deflections for the two species will be!Ves from the fact that the equilibrium distribution in a setup
useless if it is bought at the price of a large width of theWith @ wall at the bottom is given by the Boltzmann distri-
respective distributions, which will overlap so that they can-Pution, which carries over from the microscopic density to
not be separated unambiguously. the coarse-grained density, whose evolution is governed by

D and ; Apart from the fact that one has to be still in the

D=DDy(£,9). 2)

A. Macroscopic drift and diffusion

(u/w)vn, with n being the direction of the micro-
scopic drift. The numerical calculatiorisee remarks in Sec.
III') will confirm that it fulfills the Onsager symmetry rela-

The general functional dependence wfand D can be
obtained from dimensional analysis. The microscopic paramregime of linear variation ot/ for the Einstein relation to
eters entering are the microscopic drift veloaitypointing  make sense, it can only hold as long as the force is not so
along they direction, the (isotropig diffusion constantD,  strong as to make the density fall off rapidly over the scale of
the height of the obstaclds and a collection of parameters a single obstacle, because then the coarse-graining procedure
describing their shap&(including the aspect ratioThe only  is no longer justified. This happens approximatelyatl,
possibility of forming a dimensionless parameter out of awhich is also the condition that has to be reached to see an
combination ofD, v, andh is given by appreciable separation effect.
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A here will also be reached whén and ¢, are of the order of
one. This is confirmed by the numerical analysis below.

N

C. Quality of separation

»]
=,

In the long-time limit, the ensemble of the particles of a
h given specieghaving started at the injection pojrassumes
> the form of a two-dimensional Gaussian distribution, which

drifts at a veIocityJ . Therefore, the distribution of particles
along thex coordinate of the final row is also a Gaussian,
which is centered around some valpe and has a widtl.
FIG. 2. Parameters entering the analytical estimate of the mad/Ve will assume that separation is performed by collecting all
roscopic drift velocity. The spreading Gaussian distribution is cutthe particles up to some poirg in one bin and the rest in

Y.

b

into two halves(see text another bin. Ideally, the two bins would only receive par-
ticles of a single species (1 or 2). Due to the overlap of the
B. Analytical estimate two distributions, this is not possible and there is a certain

Jercentage of particles that are attributed to the wrong bin.

lytically [5,7,9 for high enough external forcéarge &). Qu,?l_itativ_el_y, _the optimal choicg of; is one where this_ “er-
Then, one can treat the motion in the direction of the externgi®’” IS mMinimized. However, since there are two different
force as deterministitneglecting diffusiol, so that diffusive ~ YPeS of errorgpercentage of particles 1 attributed to bin 2
spreading takes place only in the perpendicular direction. 1@Nd vice versa no unambiguous definition of the optimal
this simplified picture, the geometric ratchet becomes analgchice 0fx, and the corresponding optimal separation qual-
gous to a time-dependent one-dimensional “flashing’ity €xists. We suggest to take the separatioix@) and(x,)
ratchet, with they coordinate playing the role of time. For a @nd divide it by the maximum of the widths, ando, to
typical obstaclgas has been used, e.g., in the experiment ofir"ive at a measure of the separation quality, which is easily
van Oudenaarden and BoXdi0)), the diffusing particle dis- €valuated as

tribution (in the shape of half a Gaussian curvéll be split

into two parts by the “top part” of the obstacle, see Fig. 2.
Here and in the following, we assume that there is one con- . : .
nected obstacle. The left part proceeds downward further OA: or the parameters considered here, it seems to be appropri-

: : . dte.
while the ﬂgfl p.art moves one ,Ce” to the right. Therefore, Another possible definition consists in replacing the maxi-
the slopev,/v, is given essentially by the percentage of

. Y mum by the geometric mean of the two widths,
particles that have moved to the right in such an “elementary

step,” i.e., by an integral over the respective part of the P B ——

Gaussian distribution. For largeit can be approximated by Q'=l(xp) = ()02 ®)
an exponentia{which becomes a good approximation if the
magnitude of the following exponent exceeds 2),

The magnitude of the ratchet effect can be estimated an

Q=(x1) = (xz)|/max(ay,07). (4)

Note, however, that there are situations when this may be
a misleading measure, particularly when one of the widths
. 2b h 1 2 o1 Or o, is much larger than the other. In these cagewiill
Uy w .
P(&)= =*—\ﬁ—eXP( - —g) (3)  probably be better suited.
v, mw Y h g 4hh’ Other measures have been used in the literature. For ex-
ample, in Refs[9,7], the authors essentially asked how large
Here, the dependence @grhas been made explicit, while the relative difference in the diffusion constants of two spe-
all the other dimensionless parameters are ratios of lengthsies should be in order to have a separation that exceeds the
determining the shap8 of the obstaclesee Fig. 2 Obvi-  spread of one of the two distributions.
ously, if the force becomes very large, the particles will only In any case, any reasonab|y defined optima| Separation
move down inside “channels,” since they do not have timequality can only be a function of two dimensionless param-
to spread to the left or right. Then the slope, /v, becomes eters: the measui@ (or Q") used here and the ratie, / .
very small, as is expressed by this formula. On the other The goal is to optimize the separation quality for two
hand, for very small forces, neglecting the possibility of dif- given species of particles by varying the applied force and
fusing backwards in thg direction(or more than one cell in the shape of the obstacléscluding their size and aspect
the x direction renders this estimate invalid. Qualitatively, ratio). The following parameters are naturally assumed to be
however, it is correct that the slope tends to a constant in théxed: the microscopic mobilities and diffusion constants of
limit of vanishing forceé— 0. Therefore, separation is inef- the speciegconnected by the Einstein relation for a given
fective both at very small forcesince the slopes of the two temperaturg the ratioh of the forces(equal to the ratio of
species are the samend at very large forcegsince the charges in an electric fieldand the total heighH of the
slopes differ but are both very smallSince the prefactor periodic array in the direction. The latter will be dictated by
multiplying £ in the exponent is of the order of one, the practical consideration@f it could be made arbitrarily large,
optimum separation quality for the obstacle shape discussezhe would do this to get an ideal separation ejfect
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We want to argue when and why a nontrivial optimum isregime, the expression f@' is not any longer a good mea-
to be expected. It has been pointed out above that choosirgure of separation quality: The difference in the spread of the
the force too large or too small results in a decrease of sepawo species grows too fast.
ration quality. Likewise, one could make the ratchet effect
itself arbitrarily strong, by choosing a slanted line of large IIl. THE LATTICE MODEL
slope dx/dy (as one big obstacle However, both species ) o
would drift along that line and could not be separated either. Ve have set up a model to study numerically the diffusion

In order to obtain a more quantitative understanding, wef particles under the influence of an external force in a
.y periodic array of obstacles: A single particle is positioned on

use the general functional forms given forand D, and 3 5int of & two-dimensional lattice, which consists of square
insert them into the measu@introduced above. More pre- (|45 puring each time step, the particle either changes its
cisely, we use the scaling expressiofx)=Huv,/vy  position to one of the neighboring squaresith a certain
=HXq(§,5) ando= {DH/voy(&,5) for both species, which  probability) or remains on its original square.

are assumed to have the same microscopic valugsasfdD The probabilities to move to the right or to the left are
but different forces acting on them, such that v,=Av both equal td". In the absence of obstacles, there is conse-
and§,=N§;=\E. Thus, we obtain quently no net flow of particles in the horizontal direction.
The probability to move downward.e., in the positivey
[(x2) = (X2)| H  VEXo(€) = Xxo(AE)] direction is T'+ a, the probability to move upward i
Q= = (6)  —a (see inset of Fig. )1 The probability to remain on the

maxos,02) h max(oo(A§)/ VX, 00(£)) original square is therefore equal te-#I". Because of the

. _ o different probabilities to move upward and downward, a net
After the fraction in the last line has been optimized by, results in the vertical direction.

varying both¢ and the shap& of the obstaclesQ could be The following relations hold for the microscopic drift ve-

made arbitrarily large by having the heighof an individual  |ocjty 4, in they direction and the microscopic diffusion con-
obstacle go to zer¢at fixed aspect ratjp such that the array  gianip-

(of fixed heightH) contains more rows. Sincé=vh/D

must remain constant, this means that the microscopic drift v=2a,

velocity v has to go to infinity. Physically, the enhancement

of separation quality can be understood in the following way: D=T. (8
Although the slopes will remain the same, the relative size of ) ]

the diffusive spread decreases likB/H. Note as well that We assume lengths to be measured in lattice constants and

due to the same reason, the maximum of the fraction doedme in units of the elementary time step. For the interpreta-
not exist, strictly speaking. It is possible to kelefiixed but tion of thg results, only the value of the dimensionless pa-
still have an effective increase in the number of rows byr@meteré is needed,

placing an array of miniaturized obstacles inside an “el- £=vh/D=2ah/T 9
ementary” cell. However, in practice, there are obvious re- '

strictions on the force that can be applied to the particles, agnhereh is the height of an obstaclelementary cell of the
well as on the minimum size of the obstacles. Therefore, it igyrray) measured in lattice constants. From this expression, it
only possible to choose the force as large as possible and the cjear that increasing the spatial resolutin means de-
corresponding value df in such a way that takes on the  ¢reasinga/T', such that this ratio vanishes in the physically
optimal value under these restrictions. relevant continuum limit. Actually, we have already assumed
It is also helpful to consider the behavior &f for the <1 in writing down Eq.(8). Otherwise, one would have to
analytical estimate given in E¢3), which is valid for large  take into account that the diffusion resulting from the model
values of¢. After H/h rows (and a timet=H/v,), the aver-  stated above is anisotropic, wiy,=I" andD,,=I"—2a”.
age deflection i®t=v,Pt and the variance of the resulting In our Monte Carlo simulation, we have usually cho$eto
Poisson distribution is R,,t=bHP. This gives the relation Pe Of the order of 0.1 and/I" to be less than about 0.1.
Sxxlv_x=b/2, which is confirmed by the numerical results Obstacles are represented by “forbidden” squares. If the

below (for obstacles of type andB in Fig. 6). We obtain particle would have to move onto such a square, it does not
yp 9.9 move and remains on its original square. All obstacles are

arranged periodically.

o~ H [P(§)—-P(\&)I @ Particles start in the top left square of the array. They
b max(yP(&),VP(N &) continue moving until they have reached the final row, where

their x coordinate is saved. Using the results of many runs,

By setting P(¢)~exp(— y&), with some exponeny, we the average deflectio(x) and the standard deviatian of
can find the approximate behavior & It drops like exp the resulting distribution can be calculated, see Fig. 1. Alter-
(—&I2) at large ¢, regardless of. (>1). On the other natively, a particle runs for a given number of time steps and

hand, the alternative definitio®’ given above would only its final coordinates _are registered. In this_way, the macro-
decrease like eXp-&1(3—\)/4]. For A>3, this may even scopic drift velocityv and diffusion tensoD can be ob-
rise at large¢, which is probably an indication that, for this tained.
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In order to test the Monte Carlo simulatigwhich has Actually, every site with no neighboring obstacle sites

been implemented iﬂ++), we have verified that the distri- contributes jusp(xyy)l}) to this sum, Where}> is the micro-
bution of deflections in the final row is Gaussiawhen  scopic drift velocity. In this sense, the deviation of the mac-
coarse grained over several obstackrsd becomes indepen- T - _
dent of the precise starting position after a sufficiently largeg@Scopic driftv from v is seen to arise only from the bound-
time (number of rows of the arrayand all quantities show aries of the obstacle. This can be Ende[stood most easily in
the correct scaling behavior described by E2), provided the continuum limit, whergg=—DVp+uvp (p being the
alT is chosen small enough. The lattice resolutimon-  continuous distribution An integration by parts yields
nected witha/I') has been chosen such that the results do
not depend on it appreciably any more. - . .

Furthermore, at small values of the external fofice., of v= jd’r=v+D % pnds. (12
v and¢), the macroscopic drift velocity depends linearly on cell obst
this force and fulfills the Onsager symmetry relations. Like-

wise the Einstein relation hold& = ukgT. Here, the second integral extends over the boundary of the

obstacle and is the normal vector of that boundafgoint-
ing away from the obstacle Therefore, those boundaries
where the density “piles up” (see Fig. 3 beloycontribute
While every quantity of interegmacroscopic drift veloc- most to the change in drift velocity. The second integral can,
ity and diffusion tensor, average deflection, and spread otherefore, be interpreted as being proportional to the “force”
distribution can be calculated using the Monte Carlo simu-due to the obstacle, impeding and deflecting the free flow of
lation, it is nevertheless useful to consider a master-equatioparticles.
solution as well. This is both because reaching a high statis- For the numerical solution, we first set ugdsparse¢ ma-
tical accuracy requires a large number of Monte Carlo rungrix corresponding to the transition rates on the lattice with
and because a discussion of the master equation yields adgieriodic boundary conditions and then solve for the station-
tional physical insights. ary solutionp. This is done by setting(x,y)=1 on an ar-
The particle distributiorp(x,y) is defined on the lattice, bitrary nonblocked site and striking out the respective col-
with integer coordinates andy. In a single time step, the umn and row in the homogeneous linear system of equations,
distribution changes by such that it becomes inhomogeneous and nonsingular. We
have used a sparse matrix bi-conjugate-gradient solver from
op(x,y)=T'(p(x+1Ly)+p(x=1y))+(I'=a)p(x,y+1) the LAPACK package of linear algebra routings3]. For a
A typical cell size of 12& 128, the number of nonvanishing
+(I'+a)p(x,y—1)—4I'p(x.y), (10 matrix entries is about £0In the end,p is normalized and
where the quantities on the right-hand side are to be evaldhe curre.nt density and mgcroscopic drift velocity are calcu-
ated at timet and Sp=p(t+1)—p(t). The equation shown lated. This type of calculation has already been performed by
here holds for every sitex(y) that has no neighboring ob- the authors of Ref.11] for a model with a smoothly varying
stacle sites. For each “forbidden” site, the corresponding inPeriodic potential. o
coming and outgoing rates have to be left out. The temporal It is also possible to calculate the macroscopic diffusion
continuum limit is obtained by lettin§j and « tend to zero, tensorD using the master equation. This involves the solu-
with their ratio kept fixed. tion of an inhomogeneous linear equation, with the linear
At large times, an ensemble of particles that has started &perator defined by Eq10) and the inhomogeneity derived
the injection point will be spread over many obstacle cellsfrom the solutionp of the homogeneous equation. The deri-
Viewed on the scale of only a few cellmuch less than the vation of the equation and the formula forcan be found in
total spreagl the distributionp is periodic. Therefore, we can the Appendix. To the best of our knowledge, such an analysis
calculate the average drift velocity by solving for the station-has not been carried out before.
ary distributionp defined inside the cell of a single obstacle,

IV. MASTER EQUATION

imposing periodic boundary conditions. is then given by V. NUMERICAL RESULTS

the average velocity inside the cell, i.e., by ) .
In this section, we present the results of both the Monte

= - Carlo simulations and solutions of the master equation.
v Z%ES J- (11) In the Monte Carlo simulation, the relative statistical ac-
curacy of the macroscopic drift velocitydg, /vy, etc) is
Here, the sum runs over all links connecting adjacent sitegiven approximately by/D/(v2Nt), while that ofD is esti-
and the “current density”f along each link is obtained by mated to be 1N, whereN is the number of samples ahis
multiplying the values op(x,y) on the two connected sites the number of time steps. Independence of the detailed initial
by the transition probabilities of a jump along the link, taking conditions is reached when the diffusive spre@dt be-
into account the direction of the link and leaving out blockedcomes much larger than the width of an obstacle (gpi-
sites. The distributiomp itself is assumed to be normalized: cally 160). We have chosen valuestef10’ andN=10° in
Zp(xy)=1. order to fulfill these criteria.
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FIG. 3. Distribution p (top),

velocity direction fieldo (middle),
and “streamlines” (bottom for
low and high force(left and right
columng. The strength of the
force ¢=12 for the left column
and £=24 for the right column,
with the microscopic drift point-
ing downward. Darker shading
signifies increasedp. Contour
lines forp have been chosen at the
same (equidistank values for the
two pictures at the top. Note that
the streamlines serve to visualize
the direction of the current den-
sity, while the real motion of a
single particle is governed by drift
and diffusion. The *“velocity di-
rection” is the normalized current
density vector field. Note the
stronger pileup in density at the
left “roof” of the obstacle for the
stronger force, as well as the dis-
tortion of streamlines there and in
the narrow channel at the right of
the pictures. The lattice shown
here consists of 160160 sites.

e A
D A
e A

A. Density distribution and flow field B. Macroscopic drift velocity and diffusion tensor

The particle distributionp and corresponding current den-

sity | resulting from the solution of the master equation for a The results for the components of the macroscopic drift
typical obstacle shape are depicted in Fig. 3, both for a lo yelocity are displayed in Fig. 4. These data have been ob-

and a high value o€f. This corresponds to the optimal situ-V\{ained. for th? opstacle of Fig. 3, l.J_Sing both the master equa-
ation for the separation of two species, where one of them idon W't.h periodic boundary co_ndmc_)ns and thg Monte _Carlo
almost not deflected at alhigh force, i.e., hight), while the simulation. As has been explained in a preceding section, the
other one has an appreciable probability to go to a neighboionset of a nonlinear dependencevgfandv, on ¢ at rather

ing cell to the right, due to diffusion around the top part of low & implies that the obstacle is well suited for obtaining a
the obstacle. separation effectrather than merely a ratchet effect
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0.5 . I - T - T - 40 fusion of particles. At higher forces, thecomponent is in-

7 hD creased, while th& componenD,, is further reduced. This

- can be understood in the following way: The motion pro-
ceeds inside vertical “channels,” such that the particle can-
not move easily in the horizontdk) direction, while the
diffusion in they direction is more or less free. Comparing

the data forD,, and v, shows thatD,,/v,~b/2 at larger

—120 values of¢ [to the right of the maximum 0b,(£)], as ex-
pected: both quantities decrease exponentially. Note that the

off-diagonal componenthy of the macroscopic diffusion
tensor changes sign at abdst 8, which seems to approxi-

01l mately coincide with the sign change Wu, /Vuy, (see Fig.
_ 4). We have not come up, however, with an explanation for
. | . | . | . X the approximate correlation betweéh, /D and ﬁvxlﬁw
% 10 20 30 20 yet. _

¢ The statistical accuracy of the Monte Carlo resultsDor
is worse than that of the results, as expected. The deviation

FIG. 4. Macroscopic drift velocity components (circles, left ~ between the results of the master equation and Monte Carlo

scalg and v, (squares, right scalén units of D/h, plotted vs¢ ~ Simulation at larger values of is reduced when the grid
=uh/D, for the obstacle shape shown in Fig. 3, with a lattice reso€solution is enhance(e., whena/I" gets smaller for fixed
lution of 160<160. The lines indicate the results of the masteré). In the examples shown here/I" takes on a maximum

equation, the symboléwhich are larger than the error barare  value of about 0.1.
from Monte Carlo simulationst&2x 107, N=10%.

04 o Vyh/D

03

C. Optimization of separation quality
In Fig. 5, the components of thesymmetrized macro-

scopic diffusion tensod have been plotted \&for the same portional to the average deflectidn) in the last row is

obstacle. At low values of the driving force, all componentsgy, v in Fig. 6, together with those of other obstacle shapes

of D are generally reduced compared with the microscopigjiscussed further below. The exponential decay is consistent

diffusion constanD, since the obstacles hinder the free dif- with the analytical estimate derived in Sec. Il B, see &)
From the slope of the logarithmic plot, a value of about 0.17

' T ' | ' T ' has been obtained for the prefactof/(4hh’) in the expo-

nent of Eq.(3), which is roughly consistent with the geo-

metrical parameters of the obstacle. Given the slope and the

spreado (derived from the components &f), one can ob-
tain the separation qualitQ) defined in Eq.(5), if one as-

sumes some ratia =§¢,/¢, of the forces acting on the two
speciegsee Fig. 7.

For the obstacle discussed above, the slopk, (pro-

D. Influence of the obstacle shape

Both the magnitude of the ratchet effect and the separa-
tion quality depend very much on the shape of the obstacle.
We have not performed a systematic search over obstacle
shapes for a kind of “global” optimization of the separation
quality because of the numerical effort involved. However,
there are a few general properties resulting from certain geo-
metrical features. These are illustrated by the numerical re-

sults for the slope /v, and the separation qualiy plotted
in Figs. 6 and 7. They can be summarized as follows.

The vertical “wall” at one side of the obstacks depicted

FIG. 5. Components of macroscopic diffusion tensog ¥er the ~ iN Fig. 3 acts to prevent particles from diffusing back to the
obstacle of Fig. 3. CirclesP,,/D; squares,D,,/D; triangles, left, thereby increasing, and leading to a better ratchet and
D,,/D. Symbols show results of the Monte Carlo simulation, linesSeparation effect. This can be seen by comparing against a
show those of the master equation. We attribute the deviation atersion with a shorter wallg). The triangular “roof” of the
higher values of (and, thereforeq/T) to effects of the finite grid  Obstacle splits the particle distribution into two halves as it
resolution. drifts downwards. If the external force is high, the particles
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1 ——T— . 0.25

0.2
0.1

o 015
270,01 T
1> <
G o
0.001
0.05
0.0001 0
4 13
l . FIG. 7. Normalized separation quali9vh/H vs &, where ¢
’ corresponds to the force on the first species &\ ¢, with A
A B c D E =2 in this plot. Full lines, results of Monte Carlo simulation; dotted

lines: Master equation. The difference is due to the larger values for

FIG. 6. SIope(x)/sz_X/v_y plotted vs¢. The obstacle shapes the diffusion tensor compongﬁ_lxx at high fqrceg yielded by the
are shown at the bottom of the plot and are discussed in theAext. Master equation. The location of the optimum does not change
refers to the obstacle shape shown in Fig. 3. much. See discussion in the text.

do not have time to diffuse a sufficient distance to the rightforces. The global maximum is expected to occur at much
and will be deflected back by the left side of this “roof,” higher values of the force, which may be unattainable in the
therefore streaming downward, with no net deflection to theexperimentiand are difficult to reach in a numerical simula-
right. The horizontal position of the upper tip determines thetion with a finite lattice resolution However, for a well-
strength of the force where this transition takes place: If it issuited obstacle like the one depicted in Fig. 3, the quality
moved to the left C), a much higher force is necessary. In peaks at moderate values of the force.

that case, the slops, /v, falls off more slowly with increas-
ing force £. At the same time, the value of the slope is gen- VI. CONCLUSIONS
erally increased at small forces, since more particles are de-

flected one cell to the nght. sisting of a two-dimensional array of obstacles, where par-

In order to illustrate the difference bgtween having Aicles perform drift-diffusive motion under the action of a
strong ratchet effect and a good separation effect, we hav

tried a tri | bstacl hich vield tivel Gonstant external force. We have carried out numerical cal-
ried a triangular obstacles), which yields a comparatively . culations using both a Monte Carlo simulation and a master-
large slope that, however, does not change very strongly wit

i S . . guation solution in order to obtain the dependence of the
applied force. By flipping the triangle along the horizontal “macroscopic” drift velocity and diffusion tensor on external
axis, an obstacle with reflection symmetry is creat&y.(

) . force and obstacle shape. Using these results, we have quan-
This has the peculiar featufé1,12 that, for symmetry rea- yiio the quality of the separation effect that can be achieved

sons,vy is an even function of the microscopic velocity  when two species of particles with differing microscopic mo-
(driving force §), so the linear mobility at low driving force pilities are injected into the array. Our results show the
vanishes. In principle, this nonlinear dependence ,0bn ¢  strong dependence on several features of the shape of the
is well suited for achieving a separation effect. However, itobstacles and demonstrate the distinction between a strong
must be kept in mind that at low values of the external forceratchet effect and a good separation effect.

the diffusive motion is dominant, so the spread and the over-

In this work, we have analyzed a geometric ratchet con-

lap qf the p_grticle distributions of the two specie; in the final ACKNOWLEDGMENT
row is significant. Therefore, the separation quality decreases
towardsé=0. We thank Hanno Gassmann for helpful discussions.

The separation quality can become zero for a special
value of the external force whenever the slope shown in Fig. APPENDIX: CALCULATING THE MACROSCOPIC

6 has an extremum as a function of microscopic veloélty_ DIFFUSION TENSOR USING THE MASTER EQUATION
such that two different can produce the same slope. This

occurs for two of the obstacle®(andE in Fig. 7). Solving the master equation for the probability density
For most of the obstacle shapes considered here, thereiizside a cell containing a single obstacle allows one to obtain
at most a local maximum of the separation quality at loweasily a numerically exact result for the macroscopic drift
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velocity 0. It is given by the average flow velocity of par- terms containing up to first derivatives pfand eliminating

ticles inside the cell, i.e., the integré@r sum over the cur-  gi ysing the boundary condition. Using the result forwe
rent densitysee Eqs(11) and(12)]. However, to assess the || obtain an inhomogeneous linear equation fritself,
quality of separation of a given geometric ratchet, it iSwhich must be solved numerically. The relation betwegn
equally important to know the macroscopic diffusion tensor,and the macroscopic diffusion tendrwill be obtained by

which governs the spreading of the macroscopic particle . . L —
density(i.e., the density averaged over many obstacles ~ 90IN9 to the second order in the spatial derivativespof

. . - X - . - B I] B
evaluation using the Monte Carlo simulation requires a largé\[though this involves the unknown functidg’, we will be
number of samples, to obtain a good statistical accuracypPl€ to eliminate it in the same way thgithad been elimi-

o : = . nated in the first step.
Therefore, it is desirable to calculai2 using the master Let us first derive a boundary condition fgt. The current

equation as well. The steps involved in the derivatiorDof = gensities for the first and second term on the right-hand side
are slightly more involved than the straightforward calcula-of £q. (A3) are given by

tion of v. L -
=jop—Dpo(Vp),
Our strategy is to derive the equation of motion for the . : . JOP_ 60(. p)_ o
macroscopic density, (Wh=—D(419)(dip)+v(9'(dip) —Dg'ddip. (A4)

dp=D;;09,p—vVp, (A1) Here, jo=(—DV+0v)p, is the current density of,

) _ ) . alone. We demangﬁ+ fl to be parallel to the obstacle wall,
from. the analogous equatlgn .for tﬁe microscopic density keeping only terms including first order derivativespoand
making use of the slow variation @f then canceling these terms. This leads to the following

If the particle density is spread over many obstacle cells boundary condition fog':
(as is the case after waiting for a sufficiently long timi¢ o -
may, in a first approximation, be described by njg=Dnipo, (A5)

p=pop. (A2)  wherej,=(—DV+u)g' is the current density related g

where p, refers to the detailed density that varies on thedNdN is the outer normal vector of th? gbsiade wall.
scale of a single obstacle but is periodic throughout the array. !N the next step, we calculatgp=—V(j+j.+---) up to
po has been obtained before by solving the master equatiotst order in the spatial derivatives pfand demancgod;p

for a single cell, using periodic boundary conditions at the~—p05ﬁ; which is essentially the drift term qu Physi-

borders of the cell and the restriction for the current densityCaIIy this equation means that a nonvanishing slope wfl

Jo to run parallel to the walls of the obstacle. gfwere |54 10 an overall increaser decreaseof the microscopic
constant, this would constitute (@ot normalizablg station-  gensity  inside an obstacle cell. The detailed shape of the
ary periodic solution to the Fokker-Planck equation. HOW-gjsgripution within that cell is not changed, only its magni-

ever,p is assume_d to vargvery slowly), _such that this is not “tude. After dropping the overall facthE we arrive at
a stationary solution and does not fulfill the boundary condi- —

tions exactly. Therefore, it has to be supplemented by “cor- Vig=—2(0)i+vi+v))po- (A6)

rection terms,” which dependnecessarily linearlyon the o

spatial derivatives op. Consequently, we taketo be given It is not necessary to know' in order to obtainv. We

by integrate both sides of this equation over the whole cell,
p:p0;+gi[7i;+ Kijai(;j;+ e (A3) assuming periodic boundary conditions tgr(as well as for

po). The boundary term resulting from the walls of the ob-
Here,g' andK' are as yet unknown periodic functions stacle containg', but it can be transformed using E@5),
(that vary on the scale of a single obstacl/e emphasize such that we end up with an equation whefehas been
that, of course, many different microscopic densipegeld  eliminated,
the same macroscopic densityThereforep is not uniquely A B N
specified ifp is given. However, in the long-time limit as- D 3€ Nipods= Zf (ondr+(vitv). (A7)
sumed herep has “equilibrated” and the deviations fropy,

are in a one-to-one correspondence with the lowest order 1he integral on the left-hand side runs along the obstacle
. - — wall, while that on the right-hand side extends over the
spatial derivatives op.

Our further strategy is as follows: We will first rederive whole cell. Since

the known result for the macroscopic drift velocity which f (Jo)id?r=v;+D jg Nipods, (A8)
is the constant coefficient appearing in the part of the equa-

tion of motion for p that contains the spatial derivatives of we have

first order: (9;: —Jﬁ; To this end, we will insert the an- - (.e )-dZF (A9)
satz(A3) into the equation of motion fas, keeping only the vi= | Uokidl,
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as has been assumed in the main text alr¢adg Eqs(11)
and (12)].

Insertingu into Eq. (A6) yields an inhomogeneous linear
partial differential equation fog' which has to be solved
numerically[assuming periodicity and the boundary condi-
tion Eq. (A5)]. Note thatg' is only determined up to a con-
stant multiple ofpg, sincep, solves the homogeneous equa-

PHYSICAL REVIEW E65 041927

For the numerical solution, it is, in principle, possible to
discretize Eqs(AS) and(A6) for g' as well as the expression

(A13) for D. However, this is guaranteed to coincide with
the results of the Monte Carlo simulation only in the con-
tinuum limit (where, e.g.@/I'—0). In order to have a better
agreement even when one is not yet in the continuum limit, it
is advisable to start directly from the discretized master

tion. However, as we will see, this does not affect the resuifduation and redo the steps of the derivation shown here for

for the diffusion tensoD to be derived fromg'. Further

remarks concerning the numerical solution of the maste‘;ﬂ
equation on the discrete lattice can be found at the end of this

appendix.
The current density related to the partmthat involves

second derivatives q? [see Eq(A3)] is equal to

(J21=(g0,p)[(-DVi+vKIT+---,  (A10)

where we have neglected higher derivatives;of/\/e arrive
at a boundary condition fd£" at the walls of the obstacle in
the same way as fag', by demanding ,o;=j +j1+ ], to be
parallel to the wall. This time, we keep only the terms in-
cluding second derivatives @f. This leads to
[n(—DV+uv)]K'=Dng'". (A11)
To this order, the time derivative @f, dp=—V ., in-
cludes both the diffusion qf and the drift of the terng'd;p,

Viot=019'd1dip—poDyiidip+ - - -, (A12)

the discrete lattice.

The equation that has actually been solved numerically to
rive atg' is given by

poi—T(p'"=p'7) = Spa(p' +p'7).  (Al4)

Lg'

Here,Lg' corresponds te-V ;. ThereforeL is the ma-
trix kernel, which is also used for solving the homogeneous
equation,Lp=0, including the same treatment of obstacle
walls and periodic boundary conditiofisee the right-hand
side of Eq.(10) for the definition ofL]. p is evaluated at the
“current site” (the site that the left-hand side referg, twhile
p'* andp'~ are evaluated at the neighboring sites, in posi-
tive or negative directions (=1,2, corresponding ta,y),
respectively. At the obstacle walls, these neighboring sites
may turn out to be “forbidden,” in which casp't or p'~
vanishes. This implements the discrete version of the bound-
ary condition discussed abov@Note that according to the
convention used here, the microscopic drift velocity is as-
sumed to point in the negatiwedirection if « is positive.

In order to evaluat®, we must carry out a sum over all

keeping only the second order with respect to the spatiajtes at the wall of the obstacle, i.e., those that have forbid-

derivatives ofp on both sides of the equation.

den sites as neighbors. This sum is denoted fzy The sum

As before, we integrate this equation over the cell and usextending over all allowed sites in the cell is denoted3hy

the boundary condition EqA11) at the obstacle walls to
eliminateK'/. The resulting expression fd then is given
by

D;i=D

8i— %ﬁjgids)_k(gj_l;j)f gidZI?. (A13)

Note that adding\ p, to @' " (with an arbitrary constar)
does not affect the result f@, due to Eqs(A8) and (A9).

+(Ujj_l;j)2 Qi_msjz%: g
(A15)

51i=r(5j'_%: n;g

The last term vanishes in the continuum limit but is im-

portant to ensure thdd does not change on adding a homo-
geneous solutionp to g'.
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