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Quantum-mechanical theory of optomechanical Brillouin cooling
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We analyze how to exploit Brillouin scattering of light from sound for the purpose of cooling optomechanical
devices and present a quantum-mechanical theory for Brillouin cooling. Our analysis shows that significant
cooling ratios can be obtained with standard experimental parameters. A further improvement of cooling efficiency
is possible by increasing the dissipation of the optical anti-Stokes resonance.
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I. INTRODUCTION

A major advantage of triply resonant optomechanical
systems is the ability to provide resonant enhancement for
both optical-pump and anti-Stokes light in addition to the
mechanical mode [1] [Fig. 1(a)]. Such systems have been
predicted to cool acoustical modes [2]. Of particular interest
is a recently demonstrated triply resonant system based on
Brillouin scattering of light from sound [3,4] as in Fig. 1(b).
Brillouin scattering is relevant for all dielectrics and constitutes
the strongest nonlinearity in all of optics [5]. It is less well
know that Brillouin scattering can be used to cool by scattering
photons in the anti-Stokes direction. Our recent experimental
observation of such Brillouin cooling [6] suggests that a model
is required to describe the potential of this new system for
ground-state cooling [7,8].

In light-sound interactions, light is scattered to both Stokes
and anti-Stokes side bands, heating and cooling the system,
respectively. Selective excitation of side bands has been
demonstrated in the past for ground-state cooling [9,10]. Here,
in order to break the material heating-cooling symmetry, we
study a resonator with an asymmetric resonance structure
[11,12]. Figure 2(a) exemplifies our proposal to resonantly
enhance the anti-Stokes process for cooling the mode, while
at the same time off-resonantly attenuating the Stokes process
to prevent heating. Obtaining a resonator that is proper for
Brillouin cooling is challenging. This is because two optical
resonances that have almost the same optical frequency but
different propagation constants are needed in order to conserve
both the energy and momentum which are given to light by
the acoustical phonon.

One type of cavity that allows such optical-resonance
pairs is whispering-gallery mode resonators [11,12]. In such
resonators, the transverse (radial-polar) order of one mode
can compensate for the frequency difference originating from
the nonsimilar longitudinal (azimuthal) order of the other. This
provides a pair of modes with different azimuthal wave vectors
but nearby frequencies, as experimentally observed via the
resulting stationary interference pattern [11,12]. The energy
flow in Brillouin anti-Stokes cooling [3] that is analyzed here
is opposite in respect to the Stokes excitation process [3,13,14].
Additionally, cooling here is a spontaneous process.
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II. DERIVATIONS OF BRILLOUIN COOLING

A. Derivation of optoacoustic coupling rate

First we derive the optoacoustic coupling rate �opt associ-
ated with Brillouin cooling. Consider a purely longitudinal
density fluctuation that is propagating along a distance L

through a cross-sectional area Am. A displacement field u

causes an elastic potential of 1
2AmT (∂zu)2, where T is the

spring constant per area. Additionally, the kinetic energy will
be 1

2Amρu̇2, where ρ is the mass density. The interaction with
the light field E is given by 1

2Aoptγ (∂zu)E2, where γ = ρ ∂ε
∂ρ

is
the electrostrictive constant which relates a change in density
to a change in permittivity, and Aopt is the area of the optical
mode. The interaction area is taken to be the area of the optical
mode because Aopt � Am. Thus, our Hamiltonian is of the
form

Ĥ =
∫ L

0
dz

{
π̂2(z)

2ρAm

+ AmT

2
(∂zû)2 + Aoptγ

2
(∂zû)Ê2 + · · ·

}
,

(1)

where the omitted parts refer to the Hamiltonian of the
electromagnetic field inside the medium. Here, π̂ (z) = Amρ ˙̂u
is the momentum density.

B. Quantization of electromagnetic field and sound wave

For the electromagnetic field, consider a single polarization
subjected to periodic boundaries. The electric field is of the
form

Ê(z) =
∑

k

Ek[âke
ikz + H.c.], (2)

where Ek is the zero-point amplitude of the electric field.
Knowing the total energy of the electric and magnetic fields in
free space, E2 and B2, to be h̄ωk

4 per mode for the ground state,
we solve for the zero-point fluctuation of the electric field:

Ek = √
(h̄ωk)/(2AoptLε). (3)

Here, ε is the material permittivity. Similar to the electric field,
the longitudinal sound wave will be quantized in the following
form:

û(z) =
∑

k

uk[b̂ke
ikz + H.c.]. (4)
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FIG. 1. (Color online) Triply resonant optomechanical systems.
(a) Radiation pressure couples two resonant optical modes to
a mirror’s mechanical resonance as proposed for cooling [2].
(b) Brillouin scattering of light by a sound wave photoelastically
scatters pump light in the anti-Stokes direction, as was recently
experimentally demonstrated [6].

Substituting Eq. (4) into Eq. (1) and solving for the coefficient
of b̂kb̂

†
k , we obtain the expressions

uk =
√

(h̄)/(2AmLρ	k), (5)

where 	k = |k|vs is the acoustic dispersion relation and vs =√
T/ρ is the speed of sound.

C. Acousto-optical interaction

Having derived expressions for both Ek and uk we turn our
attention to the optomechanical interaction term. Substituting
expressions for Ek and uk from Eqs. (2) and (4) into (1)
and using the rotating wave approximation, the Hamiltonian
simplifies to the following form:

Ĥoptmech =
∫ L

0
dz(1/2)Aoptγ (∂zû)Ê2(z)

= AoptLγ

2

∑
k,q

quqEkEk+q(b̂q + b̂
†
−q)

× (â†
k+q âk + âkâ

†
k+q)

= h̄
∑
k,q

gk,q(b̂q + b̂
†
−q)(â†

k+q âk+âkâ
†
k+q), (6)

where h̄gk,q = (1/2)AoptLγquqEkEk+q .

FIG. 2. (Color online) (a) Sample resonator spectrum showing
resonant enhancement possible at both pump and anti-Stokes fre-
quencies, with attenuation at Stokes frequency. (b) Energy diagram
for Brillouin heating and cooling processes.

The pump mode (p) is coupled to another optical mode
(aS) and an acoustical mode in which energy conservation
(ωp = ωaS − 	) and momentum conservation (kp = kaS − q)
are fulfilled [3]. Here, q and 	 represent the wave vector and
frequency of the acoustical mode, respectively. Conservation
of both quantities is possible in the kind of experimental
setup studied here due to high-order transverse optical modes
[11,12]. Taking into account momentum and energy con-
servation, the relevant coupling term in Ĥ for this process
will be

h̄gk,q(b̂q â
†
k+q âk + H.c.). (7)

D. Solving amplitude equations

As long as Brillouin cooling does not change the optical
mode populations significantly, we can describe the interaction
using coupled amplitude equations for the light field and the
vibrational mode. As before with radiation-pressure Hamilto-
nians [15], we can write a Hamiltonian for the laser-driven
mode âp, the anti-Stokes mode ˆaaS, and the phonon mode b̂ of
the form (written in a frame rotating at the laser frequency).
Here, 
 is the frequency mismatch between the driving laser
and pump mode and δω is the frequency difference between
the pump and anti-Stokes optical modes:

Ĥ = −
â†
pâp − (
 − δω)â†

aSâaS + 	b̂†b̂

+ g(â†
aSb̂âp + âaSb̂

†â†
p) + Ĥ laser

drive + Ĥdiss. (8)

This leads to the following classical equations for 〈âp〉 = αp,
〈 ˆaaS〉 = αaS, and 〈b̂〉 = β:

α̇p = [i
 − κp/2]αp + κp/2αmax
p − igαaSβ

∗, (9)

˙αaS = [i(
 − δω) − κaS/2]αaS − igαpβ, (10)

β̇ = [−i	 − �/2]β +
√

nth�ξ (t) − igαaSα
∗
p , (11)

with 〈ξ ∗(t)ξ (t ′)〉 = δ(t − t ′). Here, αmax
p is the amplitude of

the laser-driven mode at resonance (
 = 0) in the absence
of optomechanical coupling (g = 0), and nth is the thermal
phonon occupation at room temperature. We solve this system
analytically in the simplified case where the laser-drive mode
is on resonance and the frequency difference between modes
is chosen to be equal to the mechanical mode frequency 	.
Additionally, we assume a nondepleted pump and linearize
the solution around (αp,αaS,β) = (αmax

p ,0,0). Taking these
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simplifications into account, the equations to be solved reduce
to

˙αaS = [−iδω − κaS/2]αaS − igαmax
p β, (12)

β̇ = [i	 − �/2]β +
√

nth�ξ (t) − igαaSα
max∗
p . (13)

We solve the system of equations in Fourier space to obtain
an expression for 〈|β(t)|2〉 = n̄ and 〈|αaS(t)|2〉 = n̄aS, the
average phonon number and anti-Stokes photon occupation,
respectively:

〈|β(t)|2〉 = −nth�

( |c1|2
2Re[s1]

+ (c1c
∗
2)

s1 + s∗
2

+ (c∗
1c2)

s∗
1 + s2

+ |c2|2
2Re[s2]

)
, (14)

〈|αaS(t)|2〉 = −g2
k,q

∣∣αmax
p

∣∣2
nth�

( |c3|2
2Re[s1]

+ (c3c
∗
4)

(s1 + s∗
2 )

+ (c∗
3c4)

(s∗
1 + s2)

+ |c4|2
2Re[s2]

)
, (15)

s1,2 = −
(

�

4
+ κ

4

)
±

√(
�

4
− κ

4

)2

− g2
∣∣αmax

p

∣∣2
, (16)

c1 = s1 + κ
2

s1 − s2
, c2 = s2 + κ

2

s2 − s1
, (17)

c3 = 1/(s1 − s2), c4 = 1/(s2 − s1). (18)

E. Quantum noise approach

Alternatively, we can employ the quantum noise approach
to derive the cooling and heating rates for the mechanical
mode q subject to a situation where the mode k is assumed to
be laser-driven and photons are scattered into the other mode
k + q. In contrast to the amplitude equations discussed above,
the rate-equation approach will only work for κ � �opt + �M,
but unlike the amplitude approach it is not limited to situations
where the optical mode populations remain essentially un-
changed by the Brillouin processes. The idea will be to replace
the driven photon mode operator by a c number and to view the
resulting Hamiltonian as composed of a fluctuating quantum
noise term coupling to the mechanical mode. This quantum
noise term essentially arises from the interference between the
driven mode and the vacuum fluctuations in the second mode.
Consider the mode k to be driven as âk = αe−iωLt where ωL

is the driving laser frequency. Upon substitution, the coupling
term becomes

h̄gk,q

(
b̂q âk+qαe−iωLt + H.c.

)
. (19)

where b̂q couples to fluctuating quantum noise variable,
F̂ = h̄gk,q â

†
k+qαe−iωLt , in the form Ĥint = b̂q F̂

† + b̂
†
qF̂ . The

transition rate for phonon annihilation is

�n−1←n = n
1

h̄2 〈F̂ F̂ †〉ω=	, (20)

〈F̂ F̂ †〉ω = (h̄gk+q)2n̄phot2Re

[ −1

i(
 + ω) − κ/2

]
. (21)

Likewise, the transition rate for phonon creation is

�n←n−1 = n
1

h̄2 〈F̂ †F̂ 〉ω=−	, (22)

〈F̂ †F̂ 〉ω =
∫

dte−iωt 〈F̂ †(t)F̂ (0)〉 = 0. (23)

Taking into account both transition rates, we are left with a
cooling rate that is set by the balance between upward and
downward transitions. It can be written in the form

�opt = �0n̄phot, (24)

�opt = g2
k+q

κ

(κ/2)2 + (ωk+q − ωL − 	)2
, (25)

where �opt quantifies the rate of Brillouin scattering. Here we
have split off the dependence on the photon number n̄phot

circulating inside the lower optical mode. Below, we will
display the slightly generalized expressions for the average
up- and down-transition rates [deduced from Eqs. (20) and
(22)] for the case of arbitrary photon numbers in both optical
modes.

F. Rate equation approach

We can now proceed to solve a system of rate equations to
determine the average phonon number in our system. We note
that these rate equations do not take into account nonresonant
scattering processes [scattering into the tails of the optical
density of states, suppressed by a factor (κ/	)2] and would
also cease to be valid in a strong-coupling regime (where
�opt > κ,	). Having derived the form of �opt, let us now
consider a two-level optical system with photon decay rates
κp and κaS for the pump and anti-Stokes modes, respectively.
The transition rates between the two levels will be written
in terms of the optomechanical coupling rate �0, the average
photon occupations of the two optical states n̄p and n̄aS, and the
average phonon occupation n̄. The up transition corresponds
to cooling and the down transition to heating:

�↑ = �0n̄p(n̄aS + 1)n̄, (26)

�↓ = �0(n̄p + 1)n̄aS(n̄ + 1). (27)

We can write the rate equations for the two levels based on the
cavity decay rates and the heating and cooling transition rates,
and the steady state photon number due to the driving laser n̄L

p :

˙̄naS = −n̄aSκaS − �↓ + �↑, (28)

˙̄np = (
n̄L

p − n̄p
)
κp + �↓ − �↑, (29)

˙̄n = (n̄th − n̄)�M + �↓ − �↑. (30)

Solving for the steady state solution by setting the time
derivatives equal to zero yields a set of equations which
relate the photon occupations to the pump laser and acoustical
phonon occupation.

n̄p = n̄L
p − (�/κp), (31)

n̄aS = (�/κaS), (32)

� ≡ �↑ − �↓ = (n̄th − n̄)�M. (33)
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We see that � = �[n̄,n̄p(n̄),n̄aS(n̄)] is a nonlinear function of
n̄. Thus we must solve the following relation:

�(n̄) = (n̄th − n̄)�M, (34)

where n̄ will be a function of the dimensionless parameters
n̄th, n̄L

p ,
κp

�M
, κaS

�M
, and �0

�M
.

III. DISCUSSION

In the simple limit where the optical relaxation rates
κp,κaS are fast compared to the mechanical relaxation rate
and optomechanical coupling rate �M and �0, respectively, we
find that only the cooling rate remains. In this case, the system
simplifies to the following relations:

�↓ = 0, �↑ = �0n̄
L
p n̄, (35)

n̄p ≈ n̄L
p , n̄aS ≈ 0, (36)

�(n̄) = �↑ − �↓ = �0n̄n̄L
p , (37)

n̄ = n̄th
�M

�M + �0n̄L
p

. (38)

This is the usual classical cooling result where the cooling
is unlimited with input power. We can also solve the full
set of equations numerically and obtain the cooling rate as a
function of input power. For the system, we take, for example,
a 100 μm diameter SiO2 sphere [6,16] such as the ones
used in the context of Brillouin scattering previously [3,14].
The acoustical mode is taken to be a 50 MHz surface type
mode like what was theoretically suggested [17], numerically
calculated [18], and experimentally observed [3] to be excited
via forward Brillouin scattering [19]. The sphere is taken to
have two optical modes of high quality factor Q = 4 × 108.
The optical modes are exactly separated by the mechanical
oscillation frequency. Our pump is a telecom compatible
source (λ = 1.55 μm). The relevant area is taken to be where
the modes overlap, which is proportional to λ2 (the optical
mode area) [20] as the optical mode is much smaller than the
acoustical one [18].

Figure 3 plots our theoretical prediction for the average
phonon number in such a system as a function of input power.
Significant cooling would begin at pump input powers of
a few nW and saturates after a few mW. Starting from a

FIG. 3. Average phonon number as a function of input power. The
average phonon number starts from a thermal occupation of about
105 and cools by a ratio of about 1600. Inset shows the intracavity
anti-Stokes dependence on input power.

FIG. 4. (Color online) Average phonon number as a function of
both input power and anti-Stokes quality factor. The dashed lines
indicate the regime where our approximations hold.

room-temperature phonon number of about 105 (as is typical
for such systems), one could cool by a ratio of about 1600
in this example. As seen in the inset of Fig. 3, the amount
of power circulating in the anti-Stokes mode clamps as the
cooling process begins. As input power is increased, the final
average phonon number asymptotically converges to a lower
limit:

nfinal = nth
κaS
�M

+ 1
. (39)

Equation (39) indicates that, if the quality factor of the anti-
Stokes resonance were deliberately lowered compared with
the pump resonance, higher cooling ratios could be achieved:
Brillouin cooling requires an efficient way to get rid of the anti-
Stokes photons. We therefore determine the average phonon
value as a function of both pump power and anti-Stokes mode
quality factor, while all other parameters are left unchanged.
Although many experimental challenges need to be overcome,
as seen in Fig. 4, for diminished anti-Stokes quality factors,
cooling ratios above 104 can be achieved.

IV. CONCLUSION

We describe here a triply resonant structure for Brillouin
cooling and develop the theory describing this system. Unlike
before [21–28], for Brillouin cooling, the Doppler reflector is a
monotonically traveling acoustic wave. Additionally, different
from fluorescent anti-Stokes cooling [29] that cools the whole
thermal bath, Brillouin cooling evacuates heat from one
selected vibrational mode, making it attractive for experiments
in which this particular natural frequency is addressed [30].
Brillouin scattering of light from sound is a member of a broad
family of scattering processes that include Raman scattering.
This raises the question whether Raman cooling of solids is
possible in a similar manner despite the high rates involved.
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