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Arbitrarily large steady-state bosonic squeezing via dissipation
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We discuss how large amounts of steady-state quantum squeezing (beyond 3 dB) of a mechanical resonator
can be obtained by driving an optomechanical cavity with two control lasers with differing amplitudes. The
scheme does not rely on any explicit measurement or feedback, nor does it simply involve a modulation of an
optical spring constant. Instead, it uses a dissipative mechanism with the driven cavity acting as an engineered
reservoir. It can equivalently be viewed as a coherent feedback process, obtained by minimally perturbing the
quantum nondemolition measurement of a single mechanical quadrature. This shows that in general the concepts
of coherent feedback schemes and reservoir engineering are closely related. We analyze how to optimize the
scheme, how the squeezing scales with system parameters, and how it may be directly detected from the cavity
output. Our scheme is extremely general, and could also be implemented with, e.g., superconducting circuits.
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I. INTRODUCTION

Among the simplest nonclassical states of a harmonic
oscillator are quantum squeezed states, where the uncertainty
of a single motional quadrature is suppressed below the
zero-point level [1]. Such states are of interest for a variety of
applications in ultrasensitive force detection [3]; they are also a
general resource for continuous variable quantum-information
processing [4]. It has long been known that coherent parametric
driving can be used to generate squeezing of a bosonic
mode; for a mechanical resonator, this simply amounts to
modulating the spring constant at twice the mechanical
resonance frequency [5]. Such a simple parametric interaction
can yield at best steady-state squeezing by a factor of 1/2
below the zero-point level (the so-called 3 dB limit) [6]; if one
further increases the interaction strength, the system becomes
unstable and starts to self-oscillate.

The rapid progress in quantum optomechanics [7–10],
where a driven electromagnetic cavity is used to detect and
control a mechanical resonator, has led to a renewed interest
in the generation of squeezing. One could simply use radiation
pressure forces to define an oscillating spring constant [11–15],
though this cannot surpass the usual 3 dB limit on stationary
squeezing. One can do better by combining continuous
quantum measurements and feedback, either by making a
quantum nondemolition (QND) measurement of a single
motional quadrature [3,16–18], or by combining detuned
parametric driving with position measurement [19,20]. While
such schemes can generate quantum squeezing well past the
3 dB limit, they are difficult to implement, as they require
near-ideal measurements and feedback. The 3 dB limit could
also be surpassed by continuously injecting squeezed light
directly into the cavity [21], but this is also difficult as one
needs to start with a source of highly squeezed light. We note
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that a mechanical resonator could also be squeezed via a pulsed
optomechanical scheme [22].

In this work, we discuss a remarkably simple scheme for
generating steady-state mechanical squeezing well beyond the
3 dB level. We use a two-tone driving of an optomechanical
cavity, without any explicit measurement or feedback
[cf. Fig. 1(a)]. As described in Refs. [3,16,18], if one drives
the cavity with equal amplitude at both ωcav ± � (where ωcav is
the cavity frequency and � is the mechanical frequency), then
the cavity only couples to a single mechanical quadrature X1,
allowing for a QND measurement and preventing any backac-
tion disturbance of X1. In contrast, we consider a situation in
which the two drive tones have different amplitudes. One thus
no longer has a QND situation, and there will be a backaction
disturbance of X1. However, this disturbance acts to suppress

FIG. 1. (Color online) (a) An optomechanical cavity is driven on
the red and blue mechanical sideband with different laser amplitudes.
This leads to steady-state mechanical squeezing beyond 3 dB. (b)
Steady-state quadrature fluctuations 〈X̂2

1〉 [in units of the zero-point
fluctuations (ZPF)] as a function of the blue laser driving strength
G+ for different cooperativities C = 4G2

−/(κ�M ). The dark blue
region indicates squeezing beyond 3 dB. The red dashed line is
the variance of a squeezed vacuum state with squeeze parameter
r = arctan G−/G+. An optimal choice of G+/G− exists (orange
circles) maximizing the amount of squeezing for each C. (Parameters:
�M/κ = 10−4, nth = 10, C = 10,25,50,102,103,104.)
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the fluctuations of X1, to a level even below the zero-point
level. Our scheme thus realizes a coherent feedback operation,
where the driven cavity both measures the X1 quadrature and
autonomously applies the corresponding feedback operation
necessary to “cool” X1 (cf. Appendix A and Refs. [23–25] for
other examples of coherent feedback in optomechanics). This,
hence, suggests the general recipe to construct a coherent
feedback scheme by perturbing a QND measurement setup
minimally. Equivalently, one can think of the scheme as an
example of reservoir engineering [26]: the driven cavity acts
effectively as a bath whose force noise is squeezed. This
suggests that in general the concepts of coherent feedback
and reservoir engineering are closely related.

In what follows, we provide a thorough analysis of the
optimal steady-state squeezing generated by our scheme,
showing that the squeezing is a sensitive function of the
ratio of the cavity drive amplitudes. We also show that for
realistic parameters, one can obtain mechanical squeezing
well beyond the usual 3 dB limit associated with a coherent
parametric driving. While we focus here on optomechanics,
our scheme could also be realized in other implementations of
parametrically coupled bosonic modes, e.g., superconducting
circuits [27,28]. Note that related dissipative mechanisms
can be utilized to prepare the motion of a trapped ion in
a squeezed state [29], to squeeze a mechanical resonator
which is coupled to a two-level system [30], and to produce
spin squeezing of atoms in a cavity [31,32]. Unlike those
works, our analysis does not rely on describing the engineered
reservoir (the driven cavity) via a simple Lindblad master
equation; in fact, we explicitly discuss corrections to such
an approximation, which we show to become significant for
current experiments. We also note that reservoir engineering
approaches to optomechanics have been previously considered
for generating entanglement (two-mode squeezing) [33,34], as
well as coherence in arrays [35].

II. MODEL

We consider a standard optomechanical system, where
a single cavity mode couples to a mechanical resonator
via radiation pressure; cf. Fig. 1(a). It is described by the
optomechanical Hamiltonian [36]

Ĥ = �ωcavâ
†â + ��b̂†b̂ − �g0â

†â(b̂† + b̂) + Ĥdr, (1)

where the two-tone laser driving Hamiltonian reads

Ĥdr = �(α+e−iω+t + α−e−iω−t )â† + H.c.

â (b̂) is the photon (phonon) annihilation operator, and g0 is
the optomechanical coupling. ω± and α± are the frequency
and amplitude of the two lasers, respectively. We apply
the displacement transformation â = ā+e−iω+t + ā−e−iω−t +
d̂ to (1) and go into an interaction picture with respect to
the free cavity and mechanical resonator Hamiltonian. Here,
ā± is the coherent light field amplitude due to the two
lasers. If � is strongly temperature-dependent, oscillations
in the average cavity intensity can yield spurious parametric
instabilities [37]; these could be suppressed by adding an
appropriate third drive tone without strongly degrading the
generation of squeezing [38] (cf. Appendix G).

We next take the two lasers to drive the mechanical
sidebands of a common mean frequency ω̄, i.e., ω± = ω̄ ± �,
and assume |ā±| � 1. For ω̄ far detuned from ωcav, one can
eliminate the cavity to obtain an “optical spring” which is
modulated at 2� [14,15]; Ref. [11] obtains an analogous
effect by weakly amplitude-modulating a single strong drive
at ωcav − �. In contrast, we take ω̄ = ωcav as well as ā+ �= ā−
[in contrast to backaction-evasion (BAE) schemes [3,16,18]].
Applying a standard linearization to Eq. (1), we find that the
linearized Hamiltonian in our interaction picture is

Ĥ = −�d̂†(G+b̂† + G−b̂) + H.c.

− �d̂†(G+b̂e−2i�t + G−b̂†e2i�t ) + H.c. (2)

Here, G± = g0ā± are the enhanced optomechanical coupling
rates; without loss of generality, we assume G+,G− > 0.
The quantum Langevin equations describing the dissipative
dynamics read [39]

˙̂d = i

�
[Ĥ ,d̂] − κ

2
d̂ + √

κd̂in.

A similar equation holds for b̂, where the cavity decay
rate κ is replaced by the mechanical decay rate �M . The
nonzero input noise correlators read 〈d̂in(t)d̂†

in(t ′)〉 = δ(t −
t ′), 〈b̂in(t)b̂†in(t ′)〉 = (nth + 1)δ(t − t ′), and 〈b̂†in(t)b̂in(t ′)〉 =
nthδ(t − t ′), where nth is the thermal occupancy of the
mechanical bath.

III. SQUEEZING GENERATION

We now present two intuitive ways of understanding the
generation of steady-state squeezing in our scheme. For
physical transparency, we focus on the good cavity limit
κ � �, and thus ignore counterrotating terms in Eq. (2) until
the last section.

Note first that if G+ = G− (i.e., equal drive amplitudes),
the cavity only couples to the mechanical quadrature X̂1 =
(b̂† + b̂)/

√
2; cf. Eq. (2). As discussed earlier, this allows a

QND measurement of X̂1 [16,18]. If G+ �= G−, the cavity still
couples to a single mechanical operator, a Bogoliubov-mode
annihilation operator

β̂ = b̂ cosh r + b̂† sinh r,

where the squeezing parameter r is defined via tanh r =
G+/G−. We also assume G+ < G−, which ensures stability.
The Hamiltonian (2) becomes

Ĥ = −Gd̂†β̂ + H.c., (3)

where the coupling G =
√

G2
− − G2

+. This is a beam-splitter
Hamiltonian well known from optomechanical sideband
cooling [40,41]. However, instead of allowing the cavity to
cool the mechanical mode, it can now cool the mode β̂.
As the vacuum of β̂ is the squeezed state Ŝ(r)|0〉 (where
Ŝ(r) = exp[r(b̂b̂ + b̂†b̂†)/2]) [5], this cooling directly yields
steady-state squeezing. In general,

2
〈
X̂2

1

〉 = e−2r [1 + 2〈β̂†β̂〉 + 〈β̂β̂〉 + 〈β̂†β̂†〉]. (4)

If β̂ is in its ground state, 2〈X̂2
1〉 = e−2r . Thus, the cavity

acts as an engineered reservoir that can cool the mechan-
ical resonator into a squeezed state. We note that related
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entanglement-via-dissipation schemes [31,33,34] are based
on cooling a delocalized Bogoliubov mode. In contrast, we
study a localized mode which directly leads to a (single-mode)
squeezed mechanical steady state.

As mentioned, one can also interpret the squeezing gen-
eration without invoking a Bogoliubov mode, but rather as a
coherent feedback operation where the cavity both measures
and perturbs X̂1. In the simplest large-κ limit, the feedback
causes both X̂1 and X̂2 = i(b̂† − b̂)/

√
2 to be damped at a rate

�opt = 4G2/κ , but adds negligible fluctuations to X̂1 (smaller
than the zero-point fluctuations that one would associate
with �opt; cf. Appendix A). Thus, despite being driven with
classical light, the cavity acts as a squeezed reservoir leading
to mechanical squeezing.

IV. SQUEEZING VERSUS DRIVING STRENGTHS

We solve the quantum Langevin equations (first in the
rotating-wave approximation) and consider the steady-state
mechanical squeezing as a function of G+/G−, cf. Fig. 1(b),
holding constant both the ratio of damping rates �M/κ and
the red-laser amplitude [parametrized via the cooperativity
C = 4G2

−/(κ�M )]. Without the blue-detuned laser, i.e., G+ =
0, we have standard optomechanical sideband cooling: both
quadrature variances are reduced as compared to the thermal
case [40,41]. Turning on G+, the quadrature variance 〈X̂2

1〉 first
decreases with increasing G+/G−. In general, 〈X̂2

1〉 exhibits
a minimum as a function of G+/G− which becomes sharper
with increasing cooperativity C. For large C, the minimum
variance is well below 1/2 the zero-point value, i.e., the
3 dB limit. This minimum results from the competition of
two opposing tendencies. On one hand, increasing G+/G−
increases the squeezing parameter r and thus the squeezing
associated with the vacuum of β. On the other hand, increasing
G+/G− reduces G, and hence suppresses the ability of the
cavity to cool β. The optimum squeezing is thus a tradeoff
between these tendencies.

V. OPTIMAL SQUEEZING

Consider a fixed red-laser amplitude (i.e., G−) large
enough that the cooperativity C � 1. The value of G+ which
maximizes squeezing is then

G+
G−

∣∣∣
optimal

≈ 1 −
√

1 + 2nth

C , i.e., e−2r ≈ 1

2

√
1 + 2nth

C .

(5)
The corresponding minimum value of 〈X̂2

1〉 is

2
〈
X̂2

1

〉 ≈ �M

κ
(1 + 2nth) +

√
1 + 2nth

C ; (6)

cf. Fig. 2(a). We see that even for moderate values of C and
nonzero nth, quantum squeezing beyond 3 dB is achieved;
cf. Fig. 2(a). As C is increased further, the amount of squeezing
saturates to a level set by the ratio of the mechanical heating
rate to κ . Note that if one attempts to describe the effect of the
cavity on the mechanical resonator via an effective Lindblad
master equation, one misses this saturation; cf. Fig. 2(a) (see
Appendix D). An analogous Lindblad approach was recently
analyzed in the context of spin squeezing in Ref. [32].
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FIG. 2. (Color online) Maximized steady-state squeezing and
state purity. (a) Squeezing for fixed �M/κ and optimized driving
strength G+ [cf. (5)], as a function of G− (parametrized by the
cooperativity C). Squeezing beyond 3 dB is apparent even for
moderate C. Black lines represent the full theory. These curves
are well described by (6) for C � 100. Yellow dashed lines show
the prediction of a Lindblad master equation [LME, Eq. (D1)].
(b) Effective thermal occupancy neff in the mechanical steady state,
for optimized parameters, as a function of C. The colors are the
same as in (a). The full theory and the LME differ drastically
in the strong-coupling regime where G � κ (gray shaded region,
beginning first for nth = 100). (Parameters: �M/κ = 10−4, nth = 0,
and nth = 100.)

VI. STATE PURITY

It follows from Eqs. (4)–(6) that the maximal squeezing
of our scheme (at fixed cooperativity C) corresponds to
〈β̂†β̂〉 > 0. The steady state is thus a squeezed thermal state. To
quantify the purity of this state, we define an effective thermal
occupancy from the determinant of the mechanical covariance
matrix, i.e.,

(1 + 2neff)
2 = 4

〈
X̂2

1

〉〈
X̂2

2

〉 − 4〈{X̂1,X̂2}〉2. (7)

The mechanical state is a pure squeezed vacuum state if
neff = 0, while the mixedness of the state increases with neff .
As shown in Fig. 2(b), for moderately strong C, one can both
achieve squeezing beyond 3 dB and a low-entropy state, with
neff ∼ (

√
2 − 1)/2 ≈ 0.2 (independent of all parameters; see

Appendix B). This again is in marked contrast to coherent
parametric driving, where the maximal squeezing of 3 dB is
associated with a diverging neff . This is also in contrast to the
squeezing generated by a BAE measurement and feedback,
where strong squeezing is also associated with neff � 1
(cf. [18] and Appendix C).

As we increase C further, we enter the strong-coupling
regime where G � κ,�M and the cavity and the Bogoliubov
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mode hybridize. The squeezing saturates in this regime [cf.
Eq. (6)], whereas neff increases without bound. For optimized
couplings, we find n2

eff ∼ (�M/2κ)
√

(1 + 2nth)C in the large-C
limit. Thus, while one can get enhanced squeezing in the
strong-coupling regime, it comes at the price of strongly
reducing the purity of the squeezed state. It is also worth
emphasizing that, as shown in Fig. 2(b), the Lindblad master
equation approximation fails to describe accurately both the
quadrature squeezing and neff at strong coupling; this is not
surprising as the Lindblad approach cannot describe the hy-
bridization physics important in this regime; cf. Appendix D.

VII. SQUEEZING DETECTION

Squeezing of X1 can be detected by making a single-
quadrature backaction-evading measurement. One generates
the squeezed state as described above by having G+ < G−.
To then measure the squeezing, one simply increases G+
so that G+ = G−, thus allowing a QND measurement of
X1 [16,18,38]. The measurement must be fast compared to
the rate at which the mechanical dissipation rethermalizes X1,
leading to the condition C � 2nth + 1 [18].

A simpler method for verifying squeezing is to keep G+ <

G− and use the cavity output spectrum to extract the occupancy
of the β̂ mode: photons in the output are a measure of how “hot”
this mode is. This is analogous to how mechanical temperature
is obtained in sideband cooling setups [40,41]. The output
spectrum is given by

S[ω] =
∫

dt eiωt 〈δâ†
out(t)δâout(0)〉.

Here, δâout = âout − 〈âout〉 and âout + âin = √
κâ [39], where

we have assumed an ideal, single-sided cavity. We find in the
good cavity limit (cf. Appendix E)∫

dω S[ω] = 8πκ
G2

4G2 + κ(κ + �M )
〈β̂†β̂〉. (8)

Thus, knowing the red and blue driving strength G± as well as
the cavity decay rate κ � �M is sufficient to measure 〈β̂†β̂〉.
The knowledge of 〈β̂†β̂〉 is enough to find a rigorous upper
bound of the squeezing, since

〈X̂2
1〉 � e−2r [1 + 2〈β̂†β̂〉]

(see Appendix E). For large C, this upper bound coincides with
the actual value of 〈X̂2

1〉 (up to corrections ∼ 1/
√
C).

VIII. EFFECTS OF COUNTERROTATING TERMS

We now turn to the effects of the counterrotating terms
in Eq. (2) which can play a role when one deviates from
the extreme good cavity limit κ � �. These additional terms
cause the cavity to nonresonantly heat the Bogoliubov mode
β̂; as a result, the coupling-optimized quadrature squeezing
becomes a nonmonotonic function of the cooperativity C.
This is shown in Fig. 3, where we have solved the full
quantum Langevin equations, and we took parameters from
a recent experiment in microwave cavity optomechanics [42].
Steady-state squeezing beyond 3 dB still exists even for only
moderately resolved sidebands (�/κ ∼ 5). To estimate the
onset of the nonresonant heating, we can calculate the leading

FIG. 3. (Color online) Squeezing vs C for optimized driving
strengths, using realistic experimental parameters [42], and the full
theory. Yellow and white dashed lines show the theory including
effects due to a nonzero sideband parameter [i.e., no rotating-wave
approximation, in contrast to Fig. 2(a)]. The black dashed line
shows the expectation for κ/� = 0. Thus, squeezing beyond 3 dB is
expected for state-of-the-art experiments. (Parameters: yellow lines:
�M/κ = 10−4, κ/� = 1/50; white dashed lines: �M/κ = 10−5,

κ/� = 1/5.)

O[(κ/�)2] correction to 〈X̂2
1〉. Insisting it be much smaller

than the smallest variance possible in the extreme good cavity
limit (and taking C � 1) leads to the following condition on
the cooperativity:

C3/2 �
√

1 + 2nth
κ

�M

(
�

κ

)2

. (9)

This condition also ensures that the previous results for the
optimized coupling strengths remain valid. Further discussion
of bad cavity effects (as well as parameters relevant to recent
optical-frequency optomechanics experiments) are presented
in Appendix F.

IX. CONCLUSION

We have shown that large steady-state squeezing of a
mechanical resonator can be achieved by driving an op-
tomechanical cavity at both the red and blue mechanical
sideband, with different amplitudes. For realistic parameters,
steady-state quantum squeezing well beyond the 3 dB limit can
be generated. By adding a final-state transfer pulse, our scheme
could also be used to generate strong optical squeezing. It is
also general enough to be realized in other implementations of
parametrically coupled bosonic modes (e.g., superconducting
circuits).

Note added: Very recent work by Didier, Qassemi, and Blais
analyzes an alternative dissipative squeezing mechanism [43].
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APPENDIX A: SEMICLASSICAL PICTURE OF
SQUEEZING GENERATION

As described in the main text, one can obtain a semiclassical
understanding of the squeezing generation of our scheme
by formally eliminating the cavity from the dynamics; we
provide more details on this approach here. In addition to the
mechanical resonator quadratures X̂1 and X̂2, we introduce the
cavity quadratures by

Û1 = (d̂† + d̂)/
√

2 and Û2 = i(d̂† − d̂)/
√

2.

Using the Hamiltonian (2), the Heisenberg-Langevin equa-
tions take the form

˙̂X1 = −(G− − G+)Û2 − �M

2
X̂1 +

√
�MX̂1,in,

˙̂U2 = (G− + G+)X̂1 − κ

2
Û2 + √

κÛ2,in, (A1)

and

˙̂U1 = − (G− − G+) X̂2 − κ

2
Û1 + √

κÛ1,in,

˙̂X2 = (G− + G+) Û1 − �M

2
X̂2 +

√
�MX̂2,in, (A2)

where we have also introduced quadratures of the input noise
operators d̂in and b̂in. Note that these are two decoupled
sets of equations. They immediately let us understand the
backaction-evading limit G+ = G− [16,18]: the cavity Û2

quadrature measures the mechanical resonator’s quadrature
X̂1 without disturbing its time evolution. The generation of
steady-state squeezing, however, requires that G+ be slightly
smaller than G−. In this case, the cavity Û2 quadrature still
measures X̂1. However, the cavity Û2 quadrature also acts as
a force on X̂1; we can view this as a weak, coherent feedback
force [24] [cf. the first line of Eq. (A1)]. As we now show, this
effective feedback leads directly to steady-state squeezing.

It is convenient to work in the Fourier domain, where

f [ω] = 1√
2π

∫
dt eiωtf (t).

Eliminating the cavity quadratures from the mechanical
equations of motion, we find[

−iω + �M

2
+ i
[ω]

]
X̂1[ω] = −√

κ
i
[ω]

G− + G+
Û2,in[ω]

+
√

�MX̂1,in[ω] (A3)

and[
−iω + �M

2
+ i
[ω]

]
X̂2[ω] = √

κ
i
[ω]

G− − G+
Û1,in[ω]

+
√

�MX̂2,in[ω], (A4)

where the self-energy 
[ω] = −i(G2
− − G2

+)/(κ/2 − iω) is
the same for both quadratures. The imaginary part of 


describes damping of the mechanical quadratures by the cavity.

These equations also imply that the correlations 〈X̂1X̂2 +
X̂2X̂1〉 are zero.

The cavity also introduces new noise terms driving each
mechanical quadrature. We can parametrize them by an
effective temperature in the standard way by considering
their magnitude compared to the corresponding cavity-induced
damping:

1 + 2neff,X1 [ω] ≡ κ|
[ω]/(G− + G+)|2
−2 Im
[ω]

, (A5)

1 + 2neff,X2 [ω] ≡ κ|
[ω]/(G− − G+)|2
−2 Im
[ω]

. (A6)

Taking the low frequency limit, we have

1 + 2neff,X1 [0] = G− − G+
G− + G+

,

(A7)

1 + 2neff,X2 [0] = G− + G+
G− − G+

.

Thus, while the cavity damps both mechanical quadratures
in the same way, the noise added to the X̂1 quadrature is
much smaller than the noise added to the X̂2 quadrature
(this is different from coherent parametric driving, where the
squeezed X̂1 quadrature experiences extra damping whereas
X̂2 experiences extra negative damping). Moreover, the mag-
nitude of the noise added to the X̂1 quadrature is smaller than
the the zero-point noise one would associate with the optical
damping �opt ≡ −2 Im
[0], i.e., neff,X1 [0] < 0. We thus see
that the cavity effectively acts as a squeezed reservoir, i.e.,
a reservoir whose force noise is quadrature squeezed. If this
cavity-induced dissipation dominates the intrinsic mechanical
dissipation, this directly yields squeezing of the mechanical
resonator.

Finally, it is interesting to note that for a fixed C � 1, the
optimal ratio of G+/G− given in Eq. (5) of the main text
can be given a simple interpretation in terms of the effective
optical damping �opt = 4G2/κ introduced above (with G2 =
G2

− − G2
+). Using the result of Eq. (5), we have

�opt

∣∣∣
optimal

� �M (1 + 2nth)

√
4C

1 + 2nth

� �M (1 + 2nth)e2r . (A8)

One can easily confirm that this is exactly the rate at which
the β mode is heated by the mechanical bath (in the large-
r limit). We thus see that the optimal coupling condition
represents a simple impedance matching: the rate at which
the engineered reservoir (the cavity) extracts quanta from the
β mode should match the rate at which it is “heated” by the
intrinsic mechanical dissipation.

APPENDIX B: SQUEEZED-STATE PURITY

In general, the effective thermal occupancy neff (quantifying
the purity of the mechanical state) is defined by

4
〈
X̂2

1

〉〈
X̂2

2

〉 = (1 + 2neff)
2, (B1)
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cf. Eq. (7), since 〈X̂1X̂2 + X̂2X̂1〉 = 0. The two variances in
terms of the Bogoliubov mode β̂ read

2
〈
X̂2

1

〉 = e−2r (1 + 2〈β̂†β̂〉 + 〈β̂β̂〉 + 〈β̂†β̂†〉),
2
〈
X̂2

2

〉 = e2r (1 + 2〈β̂†β̂〉 − 〈β̂β̂〉 − 〈β̂†β̂†〉). (B2)

As discussed in the main text, optimal squeezing involves a
tradeoff between maximizing the squeeze parameter r (which
requires large G+/G−) and maximizing the effective coupling
G to the Bogoliubov mode (which requires small G+/G−).
The maximum squeezing at fixed C thus corresponds to β not
being in its vacuum state. Equations (B1) and (B2) thus imply
that neff �= 0; cf. Fig. 2. The optimally squeezed state is thus
in general a thermal squeezed state.

As is also discussed in the main text, there is a general
regime where one has large optimized squeezing while at the
same time having an almost pure state. This occurs for the
“moderately strong coupling” regime where C � 1 while at
the same time G < κ (no strong-coupling hybridization of β̂

and the cavity). The latter condition is satisfied for optimized
couplings as long as C is small enough to satisfy

C � 1

16

(
κ

�M

)2 1

2nth + 1
. (B3)

In this regime, one can achieve optimized steady-state squeez-
ing well beyond 3 dB and a low entropy: neff ∼ (

√
2 − 1)/2 ≈

0.2 (cf. Fig. 2).
To see this, we now focus on the limit of large coop-

erativities C = 4G2
−/(κ�M ) while keeping away from the

strong-coupling regime. Formally, one can perform this limit
by sending �M → 0 (in contrast to the previous discussions)
while keeping all other parameters fixed. Then, for G < κ and
for large C we find

(1 + 2neff)
2 ≈ 2

(
1 + 4G2

−(1 + 2nth) + κ2nth

κ2
√

1 + 2nth

1√
C

)
→ 2

(B4)
or neff ≈ (

√
2 − 1)/2. Thus, independent of the choice of

parameters, one always finds that the effective thermal oc-
cupancy neff ∼ (

√
2 − 1)/2 in the moderately strong-coupling

limit (i.e., C � 1 while G < κ). Note that in this regime, the
Bogoliubov mode β is characterized by 〈β̂†β̂〉,〈β̂β̂〉 → 1/4.
This follows from the fact that 〈β̂β̂〉 → 〈β̂†β̂〉 as C → ∞ and
Eqs. (B1)–(B4).

APPENDIX C: COMPARISON AGAINST
MEASUREMENT-BASED SCHEMES

1. Comparison against measurement-based feedback squeezing

As discussed in the main text, the ability of our scheme
to generate large amounts of stationary quantum squeezing
with low entropy indicates that it outperforms what is possible
with a simple coherent parametric driving (i.e., spring constant
modulation). Here, we also suggest that it has significant
advantages compared to schemes for squeezing based on
a backaction-evading (BAE) single-quadrature measurement
plus feedback [18]. As our scheme can be viewed as a
kind of coherent feedback operation, this apparent advantage
is reminiscent of claims made in Ref. [24]. That work

also provides specific examples where coherent feedback
control schemes can outperform Gaussian measurement-based
schemes.

For simplicity, we focus on the regime of large cooperatives
C = 4G2

−/(κ�M ) where large squeezing is possible both in our
scheme and the BAE measurement scheme. Since the latter
scheme was only analyzed in the limit of no strong-coupling
effects, we consider the same limit here: we keep G+,G− �
κ while having C → ∞ by taking �M → 0. If we simply
focus on the maximum possible squeezing achievable at a
fixed cooperativity, there is no fundamental advantage of our
dissipative scheme over the BAE scheme, as both predict a
scaling:

2
〈
X̂2

1

〉 ≈
√

1 + 2nth

C .

Of course in practice, achieving this value using BAE
measurement and feedback could be very challenging, as it
requires near-ideal measurements and feedback.

However, the advantage of our coherent feedback scheme
(even on an ideal, fundamental level) becomes apparent when
studying the purity of the generated squeezed state. As already
discussed, if we stay out of the strong-coupling regime, the
mechanical squeezed state is almost in a pure state, with the
effective number of thermal quanta neff tending to ∼0.2 for
large C as per Eq. (B4). In contrast, the BAE measurement-
plus-feedback scheme yields

(1 + 2neff)
2 =

√
1 + 2nth

√
C → ∞

in the same limit. Thus, our scheme (an example of coherent
feedback) yields a far more pure state than the measurement-
plus-feedback approach. This represents a significant advan-
tage over the measurement-based approach.

We note that one could improve the state purity achieved in
the BAE measurement scheme by measuring both quadratures
of the cavity output (instead of measuring only the quadrature
that contains information on the coupled mechanical quadra-
ture X̂1). One would thus also learn something about the
backaction noise driving the unmeasured quadrature X̂2. This
would reduce the conditional variance, and thus improve the
state purity. The analogous situation involving the dispersive
measurement of a qubit is well studied; see, e.g., [44].

2. Comparison against stroboscopic measurements

An alternative way of generating mechanical resonator
squeezing is to perform a stroboscopic QND position mea-
surement as suggested in Ref. [17]. In this scheme, the
measurement rate is modulated in time periodically. The
backaction-evading scheme is basically a stroboscopic scheme
with a particular choice for how the measurement rate is
modulated (i.e., sinusoidally). Instead of the cooperativity,
the crucial parameter determining the amount of squeezing
generated is now given by the measurement rate. Based on
the analysis of Ref. [17], the scaling of squeezing and state
purity of the stroboscopic measurement scheme is essentially
the same as in the backaction-evading scheme.
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3. Comparison against pulsed optomechanics schemes

Let us now compare our dissipative scheme to a pulsed
optomechanical scheme, where large-amplitude pulses of light
driving an optomechanical cavity are used to realize effective
strong position measurements, which, hence, can generate
squeezing [22]. We note that this scheme requires κ � �.
Since this scheme effectively realizes a strong position mea-
surement, the amount of squeezing scales with the parameter
(κ/G)2, where G = g0

√
NP , and NP is the mean number

of photons per light pulse. This is in marked contrast to our
dissipative scheme, where the cooperativity C determines the
amount of squeezing. In addition, the pulsed scheme does
not generate truly stationary squeezing, which is again in
sharp contrast to our dissipative scheme. Finally, we note that
using the pulsed scheme, it is currently challenging to get
squeezing from this scheme experimentally [45]. However,
our scheme should generate large amounts of squeezing even
for state-of-the-art experiments; cf. Fig. 3 of our manuscript.

APPENDIX D: EFFECTIVE LINDBLAD
MASTER EQUATION

In this appendix, we derive an effective Lindblad master
equation which describes the effects of the cavity (the
engineered reservoir) on the mechanical resonator. Such an
approach is common in studies of reservoir engineering;
in contrast, the approach we use in the main text goes
beyond this approximation. We start by considering the
Hamiltonian (3)

Ĥ = −�Gd̂†β̂ + H.c.,

where G2 = G2
− − G2

+, β̂ = b̂ cosh r + b̂† sinh r , cosh r =
G−/G, and sinh r = G+/G. Taking the limit of a large
cavity damping rate κ , one can use standard techniques [46]
to eliminate the cavity and derive a Lindblad-form master
equation for the reduced density matrix of the mechanical
resonator ρ̂. This takes the form

˙̂ρ = �M (nth + 1)D[b̂]ρ̂ + �MnthD
[
b̂†

]
ρ̂ + �optD

[
β̂
]
ρ̂,

where D[Â] = Âρ̂Â† − Â†Âρ̂/2 − ρ̂Â†Â/2. Expressing the
Bogoliubov mode in terms of the original operators b̂ and b̂†

yields

˙̂ρ = [�M (nth + 1) + �opt cosh2 r]D[b̂]ρ̂

+ [�Mnth + �opt sinh2 r]D[b̂†]ρ̂

+�opt cosh r sinh r DS[b̂]ρ̂

+�opt cosh r sinh r DS[b̂†]ρ̂, (D1)

where �opt = 4G2/κ and DS[b̂]ρ̂ = b̂ρ̂b̂ − b̂b̂ρ̂/2 − ρ̂b̂b̂/2.
The last two terms on the right-hand side (RHS) of this
equation do not conserve the number of mechanical quanta,
and are directly responsible for the generation of squeezing.
This Lindblad master equation is similar to the one discussed in
the context of dissipative preparation of spin squeezed atomic
ensembles [32].

Using Eq. (D1), we can again calculate the optimal value
of G+ which maximizes the squeezing (with other parameters
and G− held fixed). We find that this approach leads to the same

expression which we have already found using the full theory,
Eq. (5) in the main text. For this optimized coupling and in the
limit of large cooperativity C, the Lindblad approach predicts

2
〈
X̂2

1

〉 ≈
√

1 + 2nth

C .

Comparing with Eq. (6) in the main text, we see that the
Lindblad approach misses the saturation of squeezing to
�M (1 + 2nth)/κ in the large-C limit. The approximations
used to derive the Lindblad master equation tacitly assume
κ → ∞, and thus neglect the finite rate at which the cavity is
able to expel energy extracted from the mechanical resonator.

When focusing on the purity of the squeezed state, we find
that the Lindblad master equation predicts

(1 + 2neff)
2 ≈ 2 + 2nth√

2nth + 1

1√
C

.

This is in strong contrast to the prediction (1 + 2neff)2 ∼ √
C

of the full theory. This is because the Lindblad master equation
cannot capture strong-coupling effects.

APPENDIX E: CAVITY OUTPUT SPECTRA AND
SQUEEZING DETECTION

Let us consider the cavity output spectrum,

S[ω] =
∫

dt eiωt 〈δâ†
out(t)δâout(0)〉,

where δâout = âout − 〈âout〉 and âout + âin = √
κâ for an ideal,

single-sided cavity [39]. We find that

S[ω − ωcav] = 16κ�M [G2
+(nth + 1) + G2

−nth]

|N [ω]|2 ,

where

N [ω] = 4G2 + (�M − 2iω)(κ − 2iω).

As shown in Fig. 4, the coupling to the β mode gives rise
to weight in the output spectrum near the cavity resonance

FIG. 4. (Color online) Cavity output spectra. (a) Cavity output
spectrum for weak coupling. The spectrum at ω − ωcav as well as
the area of the spectrum are directly proportional to the occupancy
〈β̂†β̂〉. (b) If we increase the cooperativity, we observe a normal
mode splitting. This is a signature of the “strong-coupling regime,”
where the Bogoliubov mode and the photons hybridize. [Parameters:
(a) �M/κ = 10−4, nth = 10, and C = 104. (b) Same as (a)
but C = 106.]
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frequency. For weak coupling (G < κ), one has a simple
Lorentzian peak, whereas for strong coupling (G > κ) a
double-peak structure emerges. The condition for this strong
coupling to occur was given in Eq. (B3).

As discussed in the main text [cf. Eq. (8)], one can detect
the squeezing of the mechanical resonator by first measuring
〈β̂†β̂〉 from the integrated output spectrum, and then using
this to bound the variance of the X̂1 quadrature. The general
expression for the X̂1 variance in terms of the Bogoliubov
mode β̂ is given in Eq. (B2). Since in general

|〈β̂β̂〉| � 〈β̂†β̂〉 + 1
2

(which can be shown by using the Cauchy-Schwarz inequal-
ity), one finds a general upper bound for the squeezing,

2〈X̂2
1〉 � 2e−2r [1 + 2〈β̂†β̂〉].

In the limit of large cooperativity, and hence large r , one
can also find a lower bound by making use of the theoretical
predictions (for κ/� = 0). For any value of the squeezing
parameter r , we find that 〈β̂β̂〉 ∼ 〈β̂†β̂〉. In the limit of large
cooperativities (and hence large r),

〈β̂β̂〉 ≈
[

1 +
(

4
nth + 1

2nth + 1
− 2

)
e−2r

]
〈β̂†β̂〉. (E1)

Thus,

2
〈
X̂2

1

〉 ≈ e−2r [1 + 4ζ 〈β̂†β̂〉],
where

ζ = 1 +
(

2
1 + nth

1 + 2nth
− 1

)
e−2r � 1. (E2)

Using this estimate, we finally find the lower bound,

2
〈
X̂2

1

〉
� e−2r (1 + 4〈β̂†β̂〉).

APPENDIX F: EFFECTS OF FINITE
SIDEBAND PARAMETERS

To consider effects due to finite sideband parameters,
we perturbatively solve the quantum Langevin equations for
the cavity and mechanical resonator operators by using the
full, time-dependent Hamiltonian (2), keeping the leading
corrections in κ/�. We also compare with a full numerical
solution of the equations.

In Fig. 5, the quadrature variance 〈X̂2
1〉 is shown as a

function of the blue laser driving strength G+/G− including
bad cavity effects. The black curve depicts our analytical
perturbative expression (which is too lengthy to be reported
here), whereas the orange circles show the result of a numerical
simulation of (2). Note that 〈X̂2

1〉 is strongly nonmonotonic.
We find that a unique optimum of the driving strength G+/G−
maximizing steady-state squeezing still exists [cf. Fig. 5(b)].
A plot showing the maximized squeezing as a function of
the cooperativity C for fixed sideband parameter κ/� and
decay rates �M/κ is shown in Fig. 3, where parameters of a
state-of-the-art experiment [42] have been assumed. Figure 6
also shows maximized squeezing as a function of C for
experimental parameters of state-of-the-art photonic crystal
experiments [47].

Let us now discuss the influence of the counterrotating
terms in more detail. For small cooperativities, the effect of

FIG. 5. (Color online) (a) Quadrature variance 〈X̂2
1〉 as a function

of the blue driving strength G+/G− including finite sideband
parameter effects. The black curve shows the analytical result whereas
the circles represent findings due to a numerical simulation of the
full Hamiltonian (2). (b) Zoom of (a). We see that the mechanical
resonator can be squeezed beyond the 3 dB limit. (Parameters:
�M/κ = 10−4, κ/� = 1/50, nth = 100, and C = 5 × 106.)

the counterrotating terms is small. As we increase the coopera-
tivity, the squeezing parameter r also increases [cf. Eq. (5) for
the case κ/� = 0], such that the counterrotating terms become
more and more important. Since r ≈ ln[4C/(1 + 2nth)]/4 for
κ/� = 0 and large C, we find that the smaller nth, the earlier
these corrections become important. When increasing the
cooperativity further, maximum squeezing is assumed first,
after which squeezing gets lost again.

APPENDIX G: AVOIDING THE
PARAMETRIC INSTABILITY

It turns out that due to the two-tone driving, the radia-
tion pressure force F ∝ |ā+e−iω+t + ā−e−iω−t |2 oscillates at
twice the mechanical frequency, since ω± = ωcav ± �. In an

FIG. 6. (Color online) Squeezing as a function of the coopera-
tivity for optimized driving strengths where realistic experimental
parameters are assumed [47]. The yellow line and the white dashed
lines show the theory including effects due to a finite sideband
parameter. The black dashed line shows the expectation for κ/� =
0. Thus, squeezing beyond 3 dB is expected for state-of-the-art
experiments. (Parameters: �M/κ = 10−4, κ/� = 1/10.)
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FIG. 7. (Color online) Quadrature variance 〈X̂2
1〉 as a function of

the blue driving strength G+/G− including finite sideband parameter
effects and effects of a third tone; cf. Eq. (G1). The black curve 〈X̂2

1〉
includes the effects of finite sideband parameters but ignores the
third tone, i.e., G3 = 0. The circles represent results of a numerical
simulation of the full Hamiltonian including finite sideband effects
and effects due to the third tone. [Parameters: �M/κ = 10−4, κ/� =
1/50, nth = 50, andC = 103 (upper curve) andC = 104 (lower curve),
respectively.]

experiment, these oscillations can yield parametric instabil-
ities if the mechanical resonator frequency � is strongly
temperature-dependent [37]. To suppress this instability, one
can add a third driving tone to cancel the oscillations of the
radiation pressure force at 2� [38]. In the following, we show
that the influence of this third driving tone on the generation
of steady-state squeezing is small for typical experimental
parameters.

The third driving tone can be included in our theory by
adding the driving term

Ĥdrive,add = �α3(e−iω3t+iϕ â† + H.c.)

to the Hamiltonian (1). One then finds that the radiation
pressure force reads

F ∝ |ā+e−iω+t + ā−e−iω−t + ā3e
−iω3t+iϕ|2.

When choosing ω3 = ωcav − 3� [38] we find that the compo-
nent of F oscillating at 2� vanishes if ϕ = π and ā3 = ā+.
Linearizing the resulting Hamiltonian again and going into
an interaction picture with respect to the free cavity and
mechanical resonator Hamiltonian, we find that the third drive
tone gives rise to an additional term,

Ĥnew = �G3e
3i�t [b̂e−i�t + b̂†ei�t ]d̂† + H.c., (G1)

to the linearized Hamiltonian (2), where G3 = g0ā3 = G+.
The impact of this additional counterrotating term on the

generation of steady-state squeezing is shown in Fig. 7. In this
figure, the quadrature variance 〈X̂2

1〉 is shown as a function
of the blue laser driving strength G+/G− including all coun-
terrotating terms. For medium cooperativity, the influence of
the third tone is negligible. For larger cooperativity, deviations
become visible as G+ → G−. However, the minimum value
of 〈X̂2

1〉 is changed little and lies still well beyond 3 dB.
Let us now briefly discuss why the deviations become

apparent as we increase the cooperativity and as we approach
G+ → G−. An increase of the cooperativity C leads to
an increase of the squeezing parameter r , such that the
influence of counterrotating terms becomes larger; cf. the
discussion in the previous section. Thus, the influence of
the additional, counterrotating terms (G1) increases with
increasing C. Additionally, to cancel the unwanted frequency
component 2� of the radiation pressure force, we have to
choose G3 = G+. Thus, as we increase G+, the magnitude of
the additional Hamiltonian (G1) also increases, leading to a
larger perturbation of the steady-state quadrature variance.

Thus, to conclude, we can avoid the parametric instability
by adding a third driving tone while still generating squeezing
well beyond 3 dB.
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