Vieehine
L@wwuwg 1Ok
MY SICISES
IFECIURERS

Summer 2017
University of Erlangen-Nuremberg
Florian Marquardt

Long short-term memory (LSTM)

Why this name! “Long-term memory” would be the weights that are adapted
during training and then stored forever.”Short-term memory” is the input-
dependent memory we are talking about here.”Long short-term memory’
tries to have long memory times in a robust way, for this short-term memory.

Sepp Hochreiter and Jurgen Schmidhuber, 1997

Main idea: determine read/write/delete operations of a

memory cell via the network (through other neurons)

Most of the time, a memory neuron just sits there and
is not used/changed!

recall
signal no important signals signal!

0OO000000000000e

tlme

LSTM: Forget gate (delete)

memory
cell content

keep: ¢ =1x*xci
delete: ¢t =0* ¢

LSTM: Forget gate (delete)

Calculate “forget gate’:

f= O(W(f)xt 4 b(f))
memory
cell content sigmoid
(usually x,b,f are vectors,W
the weight matrix)

Obtain new memory content:
ct = f *xcp1

elementwise product

NEWV: for the first time, we are multiplying neuron values!

LSTM: Forget gate (delete)

Backpropagation

memory
cell content

The multiplication * splits the
error backpropagation into two

“forget
& branches

gate f’
Lt
input

product rule:
dfjct—1,; - 0f; dcy—1,5

ow, Ow, Ow,

(Note: if time is not specified, we are referring to t)

Ct—1. + [;

LSTM: Forget gate (delete)

memory
cell content

LSTM:Write new memory value

Ct—1 Ct i = o(W Wz, 4+ b))
515 — tanh(W(c):ct + b(c))

new value ¢;

both delete and write together:
Ct :f*Ct_l—I—’i*Et

forget new value

LSTM: Read (output) memory value

0 =o(W\9z, + b))
hy = o * tanh(c¢;)

LSTM: exploit previous memory output ‘h’

make f,i,o etc. at time t depend on output ‘h’
calculated in previous time step!

(otherwise:’h’ could only be used in higher

layers, but not to control memory access in
present layer)

f= oWz + DRy + D)
...and likewise for every other quantity!

Thus, result of readout can actually influence

subsequent operations (e.g.: readout of some
selected other memory cell!)

Sometimes, o is even made to depend on c;

LSTM: backpropagation through time is OK

As long as memory content is not read or written, the
backpropagation gradient is trivial:

Ct — Ct—1 — Ct—92 — ...

6’ct 8ct_1 8675_2

(deviation vector multiplied by 1)

During those ‘silent’ time-intervals: No
explosion or vanishing gradient!

Adding an LSTM layer with 10 memory cells:

Each of those cells has the full structure, with f,i,0
gates and the memory content ¢, and the output h.

rnn.add (LSTM(10, return sequences=True))

whether to return the full
time sequence of outputs, or only
the output at the final time

Two LSTM layers (input > LSTM > LSTM=output), taking an
input of 3 neuron values for each time step and producing a
time sequence with 2 neuron values for each time step

output
LSTMI®@® 2
def init memory net():
global rnn, batchsize, timesteps
rnn = Sequential () | STM .0.0. e
rnn.add (LSTM(5, batch input shape=(None,
timesteps, 3), return sequences=True)) o),
rnn.add (LSTM(2, return sequences=True)) o0
rnn.compile(loss="mean squared error', input

optimizer="'adam', metrics=['accuracy'])

Example: A network for recall

(see code on website)

Input time sequence

100000000000 000
190.0.2.0000000000060
JO0 |000000000000

>
tell recall! time

desired output time sequence

J00,0,00000000.2000

>
tell recall time

Example: A network that counts down
(see code on website)

Input time sequence

19000000000000000
JO0 |000000000000

>
tell time

desired output time sequence

OOOOOOOOOOQOOOOO

>
signal! time

Output of the recall network, evolving during
training (for a fixed input sequence)

4048

0.64

RECALL

0.56

time

10.40

40.32

4024

0.16

0.08

0.00

0 500 1000 1500 2000

Learning episode (batch of 20 for each episode)

Output of the countdown network, evolving
during training (for a fixed input sequence)

time

0 500 1000 1500 2000 2500 3000

Learning episode (batch of 20 for each episode)

