
Machine
Learning for
Physicists
Lecture 8
Summer 2017
University of Erlangen-Nuremberg
Florian Marquardt

Long short-term memory (LSTM)

Why this name? “Long-term memory” would be the weights that are adapted
during training and then stored forever. “Short-term memory” is the input-
dependent memory we are talking about here. “Long short-term memory”
tries to have long memory times in a robust way, for this short-term memory.

Sepp Hochreiter and Jürgen Schmidhuber, 1997

Main idea: determine read/write/delete operations of a
memory cell via the network (through other neurons)
Most of the time, a memory neuron just sits there and
is not used/changed!

time

signal no important signals
recall
signal!

LSTM: Forget gate (delete)

*
memory
cell content

ct�1 ct

keep:
delete:

ct = 1 ⇤ ct�1

ct = 0 ⇤ ct�1

LSTM: Forget gate (delete)

*

“forget
gate f”

input

memory
cell content

xt

sigmoid
(usually x,b,f are vectors, W
the weight matrix)

Calculate “forget gate”:

Obtain new memory content:

elementwise product

NEW: for the first time, we are multiplying neuron values!

ct = f ⇤ ct�1

ct�1 ct f = �(W (f)
xt + b

(f))

LSTM: Forget gate (delete)

*

“forget
gate f”

input

memory
cell content

xt

Backpropagation

ct�1 ct

@fjct�1,j

@w⇤
=

@fj
@w⇤

ct�1,j + fj
@ct�1,j

@w⇤

(Note: if time is not specified, we are referring to t)

The multiplication * splits the
error backpropagation into two
branches

product rule:

*

LSTM: Forget gate (delete)

*

“forget
gate f”

input

memory
cell content

t-1 t t+1

LSTM: Write new memory value

*
“input
gate i”

input
xt

ct�1 ct

new value

+

ct = f ⇤ ct�1 + i ⇤ c̃t

c̃t

forget new value

both delete and write together:

i = �(W (i)
xt + b

(i))

c̃t = tanh(W (c)
xt + b

(c))

LSTM: Read (output) memory value

*

“output
gate o”

input
xt

ct�1 ct

ht

ht = o ⇤ tanh(ct)
o = �(W (o)

x

t

+ b

(o))

LSTM: exploit previous memory output ‘h’

make f,i,o etc. at time t depend on output ‘h’
calculated in previous time step!

(otherwise: ‘h’ could only be used in higher
layers, but not to control memory access in
present layer)

f = �(W (f)
xt + U

(f)
ht�1 + b

(f))

...and likewise for every other quantity!

ctSometimes, o is even made to depend on

Thus, result of readout can actually influence
subsequent operations (e.g.: readout of some
selected other memory cell!)

LSTM: backpropagation through time is OK

As long as memory content is not read or written, the
backpropagation gradient is trivial:

ct = ct�1 = ct�2 = . . .

(deviation vector multiplied by 1)

@ct
@w⇤

=
@ct�1

@w⇤
=

@ct�2

@w⇤
= . . .

During those ‘silent’ time-intervals: No
explosion or vanishing gradient!

rnn.add(LSTM(10, return_sequences=True))

Adding an LSTM layer with 10 memory cells:

Each of those cells has the full structure, with f,i,o
gates and the memory content c, and the output h.

whether to return the full
time sequence of outputs, or only
the output at the final time

def init_memory_net():
 global rnn, batchsize, timesteps

rnn = Sequential()
 # note: batch_input_shape is
(batchsize,timesteps,data_dim)

 rnn.add(LSTM(5, batch_input_shape=(None,
timesteps, 3), return_sequences=True))

 rnn.add(LSTM(2, return_sequences=True))
 rnn.compile(loss='mean_squared_error',
optimizer='adam', metrics=['accuracy'])

Two LSTM layers (input > LSTM > LSTM=output), taking an
input of 3 neuron values for each time step and producing a
time sequence with 2 neuron values for each time step

5

3

2

input

output

LSTM

LSTM

timetell recall!
0
1
2

0.4

1

1

input time sequence

desired output time sequence

timetell recall
0 0.4

Example: A network for recall
(see code on website)

Example: A network that counts down

timetell
0
1 7

1

input time sequence

desired output time sequence

timesignal!
0

7 steps

1

(see code on website)

TELL

RECALL

Learning episode (batch of 20 for each episode)

tim
e

Output of the recall network, evolving during
training (for a fixed input sequence)

Output of the countdown network, evolving
during training (for a fixed input sequence)

TELL (delay 5)

SIGNAL

Learning episode (batch of 20 for each episode)

tim
e

