Difference between revisions of "Publications of the Marquardt group"
From Institute for Theoretical Physics II / University of ErlangenNuremberg
m 

Line 3:  Line 3:  
{  {  
−   width=33%; valign="top"[[File:BifurcationA.  +   width=33%; valign="top"[[File:BifurcationA.png300pxcenterlink=http://arxiv.org/abs/1604.07053]] 
'''[[media:2016_Kusminskiy_Optomagnonics.pdfCoupled spinlight dynamics in cavity optomagnonics]]''' (Viola Kusminskiy, Tang, and Marquardt, 2016)  In optomagnonic cavities, light couples parametrically to magnons via the Faraday effect. This coupling was demonstrated very recently, in two experiments appearing at the end of 2015. In this article, we derive the microscopic Hamiltonian of the system and study the optically induced dynamics of a homogeneous magnon mode. We show that the system exhibits a plethora of nonlinear effects, such as chaos and selfsustained oscillations, which should be tunable and experimentally observable in current setups.  '''[[media:2016_Kusminskiy_Optomagnonics.pdfCoupled spinlight dynamics in cavity optomagnonics]]''' (Viola Kusminskiy, Tang, and Marquardt, 2016)  In optomagnonic cavities, light couples parametrically to magnons via the Faraday effect. This coupling was demonstrated very recently, in two experiments appearing at the end of 2015. In this article, we derive the microscopic Hamiltonian of the system and study the optically induced dynamics of a homogeneous magnon mode. We show that the system exhibits a plethora of nonlinear effects, such as chaos and selfsustained oscillations, which should be tunable and experimentally observable in current setups.  
Revision as of 11:29, 29 April 2016
This page lists publications from the Marquardt group, in reverse chronological order. You may also browse our research topics. We start with a few recent highlights. You find the reference list further below.
Coupled spinlight dynamics in cavity optomagnonics (Viola Kusminskiy, Tang, and Marquardt, 2016)  In optomagnonic cavities, light couples parametrically to magnons via the Faraday effect. This coupling was demonstrated very recently, in two experiments appearing at the end of 2015. In this article, we derive the microscopic Hamiltonian of the system and study the optically induced dynamics of a homogeneous magnon mode. We show that the system exhibits a plethora of nonlinear effects, such as chaos and selfsustained oscillations, which should be tunable and experimentally observable in current setups. 
Sensing enhanced by deamplification (Peano, Schwefel, Marquardt and Marquardt, 2015)  In this article we show that the precision of position detection can be enhanced by the squeezing generated internally in an optomechanical parametric amplifier. Counterintuitively, the enhancement of the signaltonoise ratio works by deamplifying precisely the quadrature that is sensitive to the mechanical motion without losing quantum information. 
Dynamical Gauge Fields in Optomechanics (Walter and Marquardt, 2015)  In this article we show that the most basic phononassisted photon tunneling process which is due to an optomechanical interaction leads to a scenario where phonons can act as a dynamical gauge field for photons, compared to previously studied static gauge fields. In the optomechanical setting these dynamical gauge fields arise in quite a natural manner. The mechanical oscillation phases determine the effective artificial magnetic field for the photons, and once these phases are allowed to evolve, they respond to the flow of photons in the structure. 
Topological phases of sound and light (Peano, Brendel, Schmidt, Marquardt 2015)  A Phonon Chern insulator is formed when an optomechanical array is driven by a laser with an appropriate pattern of phases. The resulting chiral, topologically protected phonon transport along the edges can be probed completely optically. Moreover, we identify a regime of strong mixing between photon and phonon excitations, which gives rise to a large set of different topological phases. This work was also highlighted in Nature Photonics. 
Optomechanical magnetic fields for photons (Schmidt et al. 2015)  The optomechanical interaction between mechanical vibrations and light can be used to produce artificial magnetic fields for photons, in a tuneable way that is not tied to the geometry (as other approaches are) and is controlled entirely optically. This work was also highlighted in Nature Photonics.

Optomechanical Dirac Physics (Schmidt, Peano, Marquardt 2015)  Photonic crystals with many localized photonic and phononic modes could be used to form 'optomechanical arrays'. This paper predicts that engineering their optomechanical band structure gives access to many phenomena usually known in condensed matter. In particular, we predict optomechanical variants of the Dirac physics known from graphene, now affecting the transport of photonphonon polaritons on a honeycomb lattice. 
Optomechanical synchronization (Bagheri et al 2013)  In this experiment of the Tang group at Yale, two 'distant' nanomechanical resonators are coupled via the optical field inside a racetrack optical cavity. Their oscillations are observed to synchronize, which had previously been demonstrated only for disk resonators almost touching each other. In addition, novel features like peculiar sidebands in the observed mechanical spectrum show up. These hint at dynamics beyond the most widely used models of synchronization.  
Where do the currents flow? (Kessler, Marquardt 2014)  In optical lattices, it is now experimentally possible to detect the precise location of single atoms. This paper suggests that this novel tool could also be used to take 'snapshots' of current patterns. These fluctuating patterns could reveal, via their statistics, important information about quantum manybody states of ultracold atoms, e.g. when an artificial magnetic field is applied.

Signatures of quantum nonlinearities (Kronwald, Marquardt 2013)  Optomechanical experiments are not yet able to observe indications of the nonlinear quantum nature of the optomechanical interaction. However, experiments are coming closer to this "nonlinear quantum regime". In this work, we propose a way how first indications of this nonlinear quantum regime could be observed in a twotone driving experiment using nearfuture optomechanical devices. 
Shuttling electrons, one by one (Moeckel et al. 2014)  Nanomechanical electron shuttles are little metallic islands that vibrate between electrodes, carrying electrons from one electrode to the other. In principle, they could be exploited to produce a precise current standard, essentially by counting the number of electrons. However, keeping track of the count is not so easy. In this paper, it is shown that the nonlinear dynamics of such a shuttle permits a trick: synchronization of selfoscillations to an external drive. This could drastically increase the precision. 
Contents
2016
 Topological quantum fluctuations and travelling wave amplifiers
Vittorio Peano, Martin Houde, Florian Marquardt, and Aashish Clerk, arXiv:1604.04179 (2016) JournalPDF
 Manyparticle dephasing after a quench
Thomas Kiendl and Florian Marquardt, arXiv:1603.01071 Journal PDF
 Topological phase transitions and chiral inelastic transport induced by the squeezing of light
Vittorio Peano, Martin Houde, Christian Brendel, Florian Marquardt, and Aashish Clerk, Nature Communications 7, 10779 (2016) Journal PDF
 Noiseinduced transitions in optomechanical synchronization
Talitha Weiss, Andreas Kronwald, and Florian Marquardt, New Journal of Physics 18, 013043 (2016) Journal PDF
2015
 Quantum simulation of expanding spacetime with tunnelcoupled condensates
Clemens Neuenhahn and Florian Marquardt, New Journal of Physics 17, 125007 (2015) Journal PDF
 Intracavity squeezing can enhance quantumlimited optomechanical position detection through deamplification
V. Peano, H. G. L. Schwefel, Ch. Marquardt, F. Marquardt, Phys. Rev. Lett. 115, 243603 (2015) JournalPDF
 Dynamical Gauge Fields in Optomechanics
Stefan Walter and Florian Marquardt, arXiv:1510.06754 (2015) Journal PDF
 Positionsquared coupling in a tunable photonic crystal optomechanical cavity
Taofiq K. Para?iso, Mahmoud Kalaee, Leyun Zang, Hannes Pfeifer, Florian Marquardt, Oskar Painter, Phys. Rev. X 5, 041024 (2015) Journal PDF
 Topological Phases of Sound and Light
Vittorio Peano, Christian Brendel, Michael Schmidt, and Florian Marquardt, Phys. Rev. X 5, 031011 (2015) Journal PDF  highlighted in Nature Photonics
 Magnon dark modes and gradient memory
Xufeng Zhang, ChangLing Zou, Na Zhu, Florian Marquardt, Liang Jiang, Hong X. Tang, Nature Communications 6, 8914 (2015) Journal PDF
 Quantum squeezing of motion in a mechanical resonator
E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, Science 349, 952 (2015) Journal PDF (preprint)
 Optomechanical creation of magnetic fields for photons on a lattice
M. Schmidt, S. Keßler, V. Peano, O. Painter, F. Marquardt, Optica 2, 635 (2015) JournalPDF  Highlighted in Nature Photonics
 Nonlinear radiation pressure dynamics in an optomechanical crystal
Alex G. Krause, Jeff T. Hill, Max Ludwig, Amir H. SafaviNaeini, Jasper Chan, Florian Marquardt, and Oskar Painter, Phys. Rev. Lett. 115, 233601 (2015) Journal PDF
 Optomechanical Dirac Physics
Michael Schmidt, Vittorio Peano, and Florian Marquardt, New Journal of Physics 17, 023025 (2015) Journal PDF
 Pattern phase diagram for 2D arrays of coupled limitcycle oscillators
Roland Lauter, Christian Brendel, Steven J. M. Habraken, and Florian Marquardt, Phys. Rev. E 92, 012902 (2015) Journal PDF
2014
 Cavity optomechanics
Markus Aspelmeyer, Tobias Kippenberg, and Florian Marquardt, Reviews of Modern Physics 86, 1391 (2014) Journal PDF
 Focus on optomechanics
Ivan Favero and Florian Marquardt, New Journal of Physics 16, 085006 (2014) Journal PDF
 Decoherence in a doubledot AharonovBohm interferometer: Numerical renormalization group study
Björn Kubala, David Roosen, Michael Sindel, Walter Hofstetter, and Florian Marquardt, Phys. Rev. B 90, 035417 (2014) Journal PDF
 An entanglement rate for continuous variables and its application to a resonant optomechanical multimode setup
Zhi Jiao Deng, Steven J. M. Habraken and Florian Marquardt, arXiv:1406.7815 Journal PDF
 Cavity Optomechanics: Nano and Micromechanical Resonators Interacting with Light (book)
Editors: Markus Aspelmeyer, Tobias J. Kippenberg, Florian Marquardt, Springer 2014. Springer Website for this Book
 Singlesiteresolved measurement of the current statistics in optical lattices
Stefan Kessler and Florian Marquardt, Phys. Rev. A 89, 061601(R) (2014) Journal PDF
 Quantum Optomechanics (Les Houches Lecture Notes)
Florian Marquardt, in Quantum Machines: Measurement and Control of Engineered Quantum Systems, eds. Michel Devoret, Benjamin Huard, Robert Schoelkopf, and Leticia F. Cugliandolo, Oxford University Press 2014. See Draft PDF and link to publisher website.
 Synchronizing a singleelectron shuttle to an external drive
Michael J. Moeckel, Darren R. Southworth, Eva M. Weig, and Florian Marquardt, New Journal of Physics 16, 043009 (2014) Journal PDF
 Laser Theory for Optomechanics: Limit Cycles in the Quantum Regime
Niels Lörch, Jiang Qian, Aashish Clerk, Florian Marquardt, and Klemens Hammerer, Phys. Rev. X 4, 011015 (2014) Journal PDF
 Dissipative optomechanical squeezing of light
Andreas Kronwald, Florian Marquardt, and Aashish A. Clerk, New J. Phys. 16 (2014) 063058 Journal PDF
2013
 The effect of Landau–Zener dynamics on phonon lasing
Huaizhi Wu, Georg Heinrich, and Florian Marquardt, New Journal of Physics 15, 123022 (2013) Journal PDF
 Optomechanical Metamaterials: Dirac polaritons, Gauge fields, and Instabilities
Michael Schmidt, Vittorio Peano and Florian Marquardt, arXiv:1311.7095 Journal PDF
 Photonic Cavity Synchronization of Nanomechanical Oscillators
M. Bagheri, M. Poot, L. Fan, F. Marquardt, H. X. Tang, Phys. Rev. Lett. 111, 213902 (2013) Journal PDF
 Quantum manybody dynamics in optomechanical arrays
Max Ludwig and Florian Marquardt, Phys. Rev. Lett. 111, 073603 (2013) Journal PDF
 Arbitrarily large steadystate bosonic squeezing via dissipation
Andreas Kronwald, Florian Marquardt, and Aashish A. Clerk, Phys. Rev. A 88, 063833 (2013) Journal PDF
 Creation and dynamics of remote spinentangled pairs in the expansion of strongly correlated fermions in an optical lattice
Stefan Kessler, Ian P. McCulloch, and Florian Marquardt, New J. Phys. 15, 053043 (2013) Journal PDF
 Optomechanically Induced Transparency in the Nonlinear Quantum Regime
Andreas Kronwald and Florian Marquardt, Phys. Rev. Lett. 111, 133601 (2013) Journal PDF
 The quantum transversefield Ising chain in circuit QED: effects of disorder on the nonequilibrium dynamics
Oliver Viehmann, Jan von Delft, and Florian Marquardt, New J. Phys. 15, 035013 Journal PDF
 Gaintunable optomechanical cooling in a laser cavity
Li Ge, Sanli Faez, Florian Marquardt, Hakan E. Tureci, Phys. Rev. A 87, 053839 (2013) Journal
 Observing the Nonequilibrium Dynamics of the Quantum TransverseField Ising Chain in Circuit QED
Oliver Viehmann, Jan von Delft, and Florian Marquardt, Phys. Rev. Lett. 110, 030601 (2013) Journal PDF
2012
 Quantum Signatures of the Optomechanical Instability
Jiang Qian, Aashish Clerk, Klemens Hammerer, and Florian Marquardt, Phys. Rev. Lett. 109, 253601 (2012) Journal PDF
 Dynamics of levitated nanospheres: towards the strong coupling regime
T. S. Monteiro, J. Millen, G. A. T. Pender, Florian Marquardt, D. Chang, and P. F. Barker, New Journal of Physics 15, 015001 Journal PDF
 Full photon statistics of a light beam transmitted through an optomechanical system
Andreas Kronwald, Max Ludwig, and Florian Marquardt, Phys. Rev. A 87, 013847 (2013) Journal PDF
 Optomechanical circuits for nanomechanical continuous variable quantum state processing
Michael Schmidt, Max Ludwig, and Florian Marquardt, New J. Phys. 14 125005 (2012) Journal PDF
 Enhanced Quantum Nonlinearities in a TwoMode Optomechanical System
Max Ludwig, Amir H. SafaviNaeini, Oskar Painter and Florian Marquardt, Phys. Rev. Lett. 109, 063601 (2012) Journal PDF
 Localized phase structures growing out of quantum fluctuations in a quench of tunnelcoupled atomic condensates
Clemens Neuenhahn, Anatoli Polkovnikov and Florian Marquardt, Phys. Rev. Lett. 109, 085304 (2012) Journal PDF
 Optomechanical cooling of levitated spheres with doublyresonant fields
G. A. T. Pender, P. F. Barker, Florian Marquardt, J. Millen, and T. S. Monteiro, Phys. Rev. A 85, 021802(R) (2012) Journal PDF
 Stroboscopic observation of quantum manybody dynamics
Stefan Kessler, Andreas Holzner, Ian P. McCulloch, Jan von Delft, and Florian Marquardt, Phys. Rev. A 85, 011605(R) (2012) Journal PDF Cite
 Observation of spontaneous Brillouin cooling
Gaurav Bahl, Matthew Tomes, Florian Marquardt, and Tal Carmon, Nature Physics 8, 203 (2012) Journal
2011
 Superradiant Phase Transitions and the Standard Description of Circuit QED
Oliver Viehmann, Jan von Delft, and Florian Marquardt, Phys. Rev. Lett. 107, 113602 (2011) Journal PDF Cite
 Quantum Mechanical Theory of Optomechanical Brillouin Cooling
M. Tomes, F. Marquardt, G. Bahl, and T. Carmon, Physical Review A, 84, 063806 (2011) Journal PDF
 Collective dynamics in optomechanical arrays
Georg Heinrich, Max Ludwig, Jiang Qian, Björn Kubala, Florian Marquardt, Phys. Rev. Lett. 107, 043603 (2011) Journal PDF Cite
 Dynamics of coupled multimode and hybrid optomechanical systems
Georg Heinrich, Max Ludwig, Huaizhi Wu, K. Hammerer and Florian Marquardt, C. R. Physique 12, 837 (2011) Journal PDF
 Coupled multimode optomechanics in the microwave regime
Georg Heinrich and Florian Marquardt, Europhys. Lett. 93, 18003 (2011) Journal PDF Cite
2010
 Entanglement of mechanical oscillators coupled to a nonequilibrium environment
Max Ludwig, K. Hammerer, Florian Marquardt, Phys. Rev. A 82, 012333 (2010) Journal PDF Cite
 Thermalization of Interacting Fermions and Delocalization in Fock space
Clemens Neuenhahn and Florian Marquardt, Phys. Rev. E 85, 060101(R) (2012) Journal
 Examples of Quantum Dynamics in Optomechanical Systems
Max Ludwig, Georg Heinrich and F. Marquardt; in Quantum Communication and Quantum Networking (Springer 2010); proceedings of QuantumComm 2009, Naples, Italy; Journal Cite
 Introduction to Quantum Noise, Measurement and Amplification
A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf, Rev. Mod. Phys. 82, 1155 (2010) Journal PDF (main text) PDF (appendices) Cite
 Quantum Measurement of Phonon Shot Noise
Aashish Clerk, Florian Marquardt, Jack Harris, Phys. Rev. Lett. 104, 213603 (2010) Journal PDF Cite
 ElectronPlasmon scattering in chiral 1D systems with nonlinear dispersion
Markus Heyl, Stefan Kehrein, Florian Marquardt, Clemens Neuenhahn, Phys. Rev. B 82, 033409 (2010) Journal PDF Cite
 Dimensional Crossover of the Dephasing Time in Disordered Mesoscopic Rings: From Diffusive through Ergodic to 0D Behavior
M. Treiber, O.M. Yevtushenko, F. Marquardt, J. von Delft, I.V. Lerner, in "Perspectives of Mesoscopic Physics  Dedicated to Yoseph Imry's 70th Birthday", edited by Amnon Aharony and Ora EntinWohlman (World Scientific, 2010), chap. 20, p. 371396, ISBN13 9789814299435; arXiv:1001.0479 Journal PDF Cite
 SingleAtom Cavity QED and OptoMicromechanics
M. Wallquist, K. Hammerer, P. Zoller, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, J. Ye, H. J. Kimble, Phys. Rev. A 81, 023816 (2010) Journal PDF Cite
 Optimal control of circuit quantum electrodynamics in one and two dimensions
R. Fisher, F. Helmer, S. J. Glaser, F. Marquardt, T. SchulteHerbrueggen, Phys. Rev. B 81, 085328 (2010) Journal PDF Cite
 ACConductance through an Interacting Quantum Dot
Björn Kubala, Florian Marquardt, Phys. Rev. B 81, 115319 (2010) Journal PDF Cite
 The photon shuttle: LandauZenerStueckelberg dynamics in an optomechanical system
Georg Heinrich, J. G. E. Harris, Florian Marquardt, Phys. Rev. A 81, 011801(R) (2010) Journal PDF Cite
2009
 The dephasing rate formula in the many body context
Doron Cohen, Jan von Delft, Florian Marquardt, Yoseph Imry, Phys. Rev. B 80, 245410 (2009) Journal PDF Cite
 Toolbox of resonant quantum gates in Circuit QED
G. Haack, F. Helmer, M. Mariantoni, F. Marquardt, and E. Solano, Phys. Rev. B 82, 024 514 (2010). Journal PDF Cite
 Dimensional Crossover of the Dephasing Time in Disordered Mesoscopic Rings
M. Treiber, O. M. Yevtushenko, F. Marquardt, J. v. Delft, and I. V. Lerner, Phys. Rev. B 80, 201305(R) (2009) Journal PDF Cite
 Optomechanics
F. Marquardt and S. M. Girvin, Physics 2, 40 (2009) Journal PDF Cite
 Strong coupling of a mechanical oscillator and a single atom
K. Hammerer, M. Wallquist, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, P. Zoller, J. Ye, H. J. Kimble, Phys. Rev. Lett. 103, 063005 (2009) Journal PDF Cite
 Optomechanics (proceedings NATO Workshop Tashkent 2008)
B. Kubala, M. Ludwig, and F. Marquardt, arXiv:0902.2163; published in the proceedings of the NATO Advanced Research Workshop ’Recent Advances in Nonlinear Dynamics and Complex System Physics’, Tashkent, Uzbekistan 2008; Springer 2009. Journal PDF Cite
 Measurementbased Synthesis of multiqubit Entangled States in Superconducting Cavity QED
F. Helmer and F. Marquardt, Phys. Rev. A 79, 052328 (2009) Journal PDF Cite
 Recent progress in open quantum systems: NonGaussian noise and decoherence in fermionic systems
C. Neuenhahn, B. Kubala, B. Abel, and F. Marquardt, physica status solidi (b) 246, 1018 (2009) Journal PDF Cite
 Quantum nondemolition photon detection in circuit QED and the quantum Zeno effect
F. Helmer, M. Mariantoni, E. Solano, and F. Marquardt, Phys. Rev. A 79, 052115 (2009) Journal PDF Cite
 Cavity grid for scalable quantum computation with superconducting circuits
F. Helmer, M. Mariantoni, A. G. Fowler, J. v. Delft, E. Solano, and F. Marquardt, EPL 85, 50007 (2009) Journal PDF Cite
 Universal Dephasing in a Chiral 1D Interacting Fermion System
Clemens Neuenhahn and Florian Marquardt, Physical Review Letters 102, 046806 (2009) Journal PDF Cite
2008
 Dephasing by electronelectron interactions in a ballistic MachZehnder interferometer
C. Neuenhahn and F. Marquardt, New Journal of Physics 10, 115018 (2008) Journal PDF Cite
 Introduction to dissipation and decoherence in quantum systems
F. Marquardt and A. Püttmann, arXiv:0809.4403 Journal PDF Cite
 Optomechanics: Push towards the quantum limit (News&Views)
F. Marquardt, Nature Physics 4, 513 (2008) Journal (no PDF) Cite
 Dispersive optomechanics: a membrane inside a cavity
A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, New Journal of Physics 10, 095008 (2008) Journal PDF Cite
 Decoherence by Quantum Telegraph Noise: A numerical evaluation
B. Abel and F. Marquardt, Phys. Rev. B 78, 201302 (R) (2008) Journal PDF Cite
 The optomechanical instability in the quantum regime
M. Ludwig, B. Kubala, and F. Marquardt, New Journal of Physics 10, 095013 (2008) Journal PDF Cite
 Quantum theory of optomechanical cooling
F. Marquardt, A. A. Clerk, and S. M. Girvin, Journal of Modern Optics 55, 3329 (2008) Journal PDF Cite
 Backaction evasion and squeezing of a mechanical resonator using a cavity detector
A. A. Clerk, F. Marquardt, and K. Jacobs, New Journal of Physics 10, 095010 (2008) Journal PDF Cite
 SelfInduced Oscillations in an Optomechanical System driven by Bolometric Backaction
Constanze Metzger, Max Ludwig, Clemens Neuenhahn, Alexander Ortlieb, Ivan Favero, Khaled Karrai, and Florian Marquardt, Phys. Rev. Lett. 101, 133903 (2008) Journal PDF Cite
 Mesoscopic SpinBoson Models of Trapped Ions
D. Porras, F. Marquardt, J. von Delft, and J.I. Cirac, Phys. Rev. A (R) 78, 010101 (2008) Journal PDF Cite
 Strong dispersive coupling of a high finesse cavity to a micromechanical membrane
J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, Nature 452, 72 (2008) Journal PDF Cite
 Measuring the size of a quantum superposition of two manybody states
F. Marquardt, B. Abel, and J. v. Delft, Phys. Rev. A 78, 012109 (2008) Journal PDF Cite
2007
 Quantum Theory of cavityassisted sideband cooling of mechanical motion
F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, Phys. Rev. Lett. 99, 093902 (2007) Journal PDF Cite
 Coherence oscillations in dephasing by nonGaussian shot noise
I. Neder and F. Marquardt, New Journal of Physics 9, 112 (2007) Journal PDF Cite
 Controlled Dephasing of Electrons by NonGaussian Shot Noise
I. Neder, F. Marquardt, M. Heiblum, D. Mahalu, and V. Umansky, Nature Physics 3, 534 (2007) Journal PDF Cite
 Selfconsistent calculation of the electron distribution near a QuantumPoint Contact in the integer Quantum Hall Effect
A. Siddiki and F. Marquardt, Phys. Rev. B 75, 045325 (2007) Journal PDF Cite
 Efficient onchip source of microwave photon pairs in superconducting circuit QED
F. Marquardt, Phys. Rev. B 76, 205416 (2007) Journal PDF Cite
 Decoherence in weak localization I: Pauli principle in influence functional
F. Marquardt, J. v. Delft, R. Smith, and V. Ambegaokar, Phys. Rev. B 76, 195331 (2007) Journal PDF Cite
 Decoherence in weak localization II: BetheSalpeter calculation of Cooperon
J. v. Delft, F. Marquardt, R. Smith, and V. Ambegaokar, Phys. Rev. B 76, 195332 (2007) Journal PDF Cite
2006
 Equations of motion approach to decoherence and current noise in ballistic interferometers coupled to a quantum bath
F. Marquardt, Phys. Rev. B 74, 125319 (2006) Journal PDF Cite
 Decoherence of fermions subject to a quantum bath
F. Marquardt, in Advances in Solid State Physics (Springer), Vol. 46, ed. R. Haug [condmat/0604626] Journal PDF Cite
 Correlation induced resonances in transport through coupled quantum dots
V. Meden and F. Marquardt, Phys. Rev. Lett. 96, 146801 (2006) Journal PDF Cite
 Dynamical multistability induced by radiation pressure in highfinesse micromechanical optical cavities
F. Marquardt, J. G. E. Harris, and S. M. Girvin, Phys. Rev. Lett. 96, 103901 (2006) Journal PDF Cite
2005
 Fermionic MachZehnder interferometer subject to a quantum bath
F. Marquardt, Europhysics Letters 72, 788 (2005) Journal PDF Cite
 A manyfermion generalization of the CaldeiraLeggett model
F. Marquardt and D. S. Golubev, Phys. Rev. A 72, 022113 (2005) Journal PDF Cite
 Spin Relaxation in a Quantum Dot due to Nyquist Noise
F. Marquardt and V. A. Abalmassov, Phys. Rev. B 71, 165325 (2005) Journal PDF Cite
Before arrival as group leader in Munich (20012004)
2004
 Perturbative corrections to the Gutzwiller meanfield solution of the MottHubbard model
C. Schroll, F. Marquardt, and C. Bruder, Phys. Rev. A 70, 053609 (2004) Journal PDF Cite
 Effects of dephasing on shot noise in an electronic MachZehnder interferometer
F. Marquardt and C. Bruder, Phys. Rev. B 70, 125305 (2004) Journal PDF Cite
 Relaxation and Dephasing in a ManyFermion Generalization of the CaldeiraLeggett Model
F. Marquardt and D. S. Golubev, Phys. Rev. Lett. 93, 130404 (2004) Journal PDF Cite
 Influence of dephasing on shot noise in an electronic MachZehnder interferometer
F. Marquardt and C. Bruder, Phys. Rev. Lett. 92, 056805 (2004) Journal PDF Cite
 Electronnuclei spin relaxation through phononassisted hyperfine interaction in a quantum dot
V. A. Abalmassov and F. Marquardt, Phys. Rev. B 70, 075313 (2004) Journal PDF Cite
2003
 Dephasing in sequential tunneling through a doubledot interferometer
F. Marquardt and C. Bruder, Phys. Rev. B 68, 195305 (2003) Journal PDF Cite
2002
 NonMarkoffian effects of a simple nonlinear bath
H. Gassmann, F. Marquardt, and C. Bruder, Phys. Rev. E 66, 041111 (2002) Journal PDF Cite
 Separation quality of a geometric ratchet
C. Keller, F. Marquardt, and C. Bruder, Phys. Rev. E 65, 041927 (2002) Journal PDF Cite
 Visibility of the AharonovBohm effect in a ring coupled to a fluctuating magnetic flux
F. Marquardt and C. Bruder, Journal Of Low Temperature Physics 126, 13251337 (2002) Journal PDF Cite
 AharonovBohm ring with fluctuating flux
F. Marquardt and C. Bruder, Phys. Rev. B 65, 125315 (2002) Journal PDF Cite
2001
 Superposition of two mesoscopically distinct quantum states: Coupling a Cooperpair box to a large superconducting island
F. Marquardt and C. Bruder, Phys. Rev. B 63, 054514 (2001) Journal PDF Cite